Suppr超能文献

神经生理数据解码中频率内容与表象动力学之间的关系。

The relationship between frequency content and representational dynamics in the decoding of neurophysiological data.

机构信息

Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.

Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.

出版信息

Neuroimage. 2022 Oct 15;260:119462. doi: 10.1016/j.neuroimage.2022.119462. Epub 2022 Jul 22.

Abstract

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.

摘要

高时间分辨率、刺激诱发的神经生理数据的解码越来越多地被用于检验关于大脑如何处理信息的理论。然而,神经信号的频谱与随后的解码准确性时间进程之间的基本关系并没有得到广泛的认可。我们表明,在常用的瞬时信号解码范式中,诱发反应的每个正弦分量在随后的解码准确性时间进程中被转换为其原始频率的两倍。因此,我们建议研究人员在使用瞬时信号解码范式时,采用更激进的低通滤波,并将截止频率设置为采样率的四分之一,以消除表示性别名伪影。然而,这并不能消除随之而来的解释性挑战。我们表明,通过解码范式可以解决这些问题,这些范式将信号的瞬时幅度及其局部梯度信息用作解码的特征。在一个公开可用的 MEG 数据集上,这导致解码准确性指标更高,随时间更加稳定,并且没有以前所描述的技术和解释性挑战。我们预计,更广泛地认识到这些基本关系将通过更清楚地将它们与驱动它们的潜在信号特征联系起来,从而能够更有力地解释解码结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d63a/10565838/0c6589377ad3/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验