Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA; Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.
Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.
J Neurosci Methods. 2018 Oct 1;308:88-105. doi: 10.1016/j.jneumeth.2018.06.019. Epub 2018 Jun 30.
Over the past decade, pattern decoding techniques have granted neuroscientists improved anatomical specificity in mapping neural representations associated with function and cognition. Dynamical patterns are of particular interest, as evidenced by the proliferation and success of frequency domain methods that reveal structured spatiotemporal rhythmic brain activity. One drawback of such approaches, however, is the need to estimate spectral power, which limits the temporal resolution of classification.
We propose an alternative method that enables classification of dynamical patterns with high temporal fidelity. The key feature of the method is a conversion of time-series data into temporal derivatives. By doing so, dynamically-coded information may be revealed in terms of geometric patterns in the phase space of the derivative signal.
We derive a geometric classifier for this problem which simplifies into a straightforward calculation in terms of covariances. We demonstrate the relative advantages and disadvantages of the technique with simulated data and benchmark its performance with an EEG dataset of covert spatial attention. We reveal the timecourse of covert spatial attention and, by mapping the classifier weights anatomically, its retinotopic organization.
We especially highlight the ability of the method to provide strong group-level classification performance compared to existing benchmarks, while providing information that is complementary with classical spectral-based techniques. The robustness and sensitivity of the method to noise is also examined relative to spectral-based techniques.
The proposed classification technique enables decoding of dynamic patterns with high temporal resolution, performs favorably to benchmark methods, and facilitates anatomical inference.
在过去的十年中,模式解码技术使神经科学家能够在将与功能和认知相关的神经表示映射到解剖学上更具特异性。动态模式特别有趣,这一点可以从频率域方法的激增和成功得到证明,这些方法揭示了具有结构时空节律性的大脑活动。然而,此类方法的一个缺点是需要估计频谱功率,这限制了分类的时间分辨率。
我们提出了一种替代方法,能够以高时间保真度对动态模式进行分类。该方法的关键特征是将时间序列数据转换为时间导数。通过这样做,可以根据导数信号的相空间中的几何图案来揭示动态编码的信息。
我们为此问题推导出了一个几何分类器,该分类器简化为根据协方差进行的直接计算。我们使用模拟数据来证明该技术的相对优缺点,并使用隐蔽空间注意的 EEG 数据集来基准测试其性能。我们揭示了隐蔽空间注意的时间过程,并通过将分类器权重映射到解剖学上,揭示了其视网膜组织。
我们特别强调了该方法与现有基准相比能够提供强大的组级分类性能的能力,同时提供了与经典基于频谱的技术互补的信息。还相对于基于频谱的技术检查了该方法对噪声的鲁棒性和敏感性。
所提出的分类技术能够以高时间分辨率对动态模式进行解码,表现优于基准方法,并有利于解剖学推断。