Suppr超能文献

两种校正实验高通量筛选数据的有效方法。

Two effective methods for correcting experimental high-throughput screening data.

机构信息

Département d'Informatique, Université du Québec à Montréal, C.P.8888, s. Centre-Ville, Montréal, QC, Canada.

出版信息

Bioinformatics. 2012 Jul 1;28(13):1775-82. doi: 10.1093/bioinformatics/bts262. Epub 2012 May 3.

Abstract

Rapid advances in biomedical sciences and genetics have increased the pressure on drug development companies to promptly translate new knowledge into treatments for disease. Impelled by the demand and facilitated by technological progress, the number of compounds evaluated during the initial high-throughput screening (HTS) step of drug discovery process has steadily increased. As a highly automated large-scale process, HTS is prone to systematic error caused by various technological and environmental factors. A number of error correction methods have been designed to reduce the effect of systematic error in experimental HTS (Brideau et al., 2003; Carralot et al., 2012; Kevorkov and Makarenkov, 2005; Makarenkov et al., 2007; Malo et al., 2010). Despite their power to correct systematic error when it is present, the applicability of those methods in practice is limited by the fact that they can potentially introduce a bias when applied to unbiased data. We describe two new methods for eliminating systematic error from HTS data based on a prior knowledge of the error location. This information can be obtained using a specific version of the t-test or of the χ(2) goodness-of-fit test as discussed in Dragiev et al. (2011). We will show that both new methods constitute an important improvement over the standard practice of not correcting for systematic error at all as well as over the B-score correction procedure (Brideau et al., 2003) which is widely used in the modern HTS. We will also suggest a more general data preprocessing framework where the new methods can be applied in combination with the Well Correction procedure (Makarenkov et al., 2007). Such a framework will allow for removing systematic biases affecting all plates of a given screen as well as those relative to some of its individual plates.

摘要

生物医学科学和遗传学的快速进步增加了药物开发公司将新知识迅速转化为疾病治疗方法的压力。在药物发现过程的初始高通量筛选 (HTS) 步骤中,由于需求的推动和技术进步的促进,评估的化合物数量稳步增加。作为一个高度自动化的大规模过程,HTS 容易受到各种技术和环境因素引起的系统误差的影响。已经设计了许多错误校正方法来减少实验 HTS 中的系统误差的影响(Brideau 等人,2003 年;Carralot 等人,2012 年;Kevorkov 和 Makarenkov,2005 年;Makarenkov 等人,2007 年;Malo 等人,2010 年)。尽管这些方法在存在系统误差时能够纠正系统误差,但它们在实际中的适用性受到限制,因为当应用于无偏数据时,它们可能会引入偏差。我们描述了两种基于错误位置先验知识从 HTS 数据中消除系统误差的新方法。可以使用特定版本的 t 检验或 χ(2)拟合优度检验(如 Dragiev 等人,2011 年所述)获得此信息。我们将表明,与根本不纠正系统误差的标准做法以及在现代 HTS 中广泛使用的 B 评分校正程序(Brideau 等人,2003 年)相比,这两种新方法都构成了重要的改进。我们还将提出一个更通用的数据预处理框架,在该框架中可以将新方法与 Well 校正程序(Makarenkov 等人,2007 年)结合使用。这样的框架将允许去除影响给定屏幕所有板的系统偏差,以及相对于其某些个别板的系统偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验