Suppr超能文献

对平板数据进行排名排序有助于在高通量筛选中实现数据可视化和归一化。

Rank ordering plate data facilitates data visualization and normalization in high-throughput screening.

作者信息

Mangat Chand S, Bharat Amrita, Gehrke Sebastian S, Brown Eric D

机构信息

M. G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.

M. G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada McMaster High Throughput Screening Laboratory, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada

出版信息

J Biomol Screen. 2014 Oct;19(9):1314-20. doi: 10.1177/1087057114534298. Epub 2014 May 14.

Abstract

High-throughput screening (HTS) of chemical and microbial strain collections is an indispensable tool for modern chemical and systems biology; however, HTS data sets have inherent systematic and random error, which may lead to false-positive or false-negative results. Several methods of normalization of data exist; nevertheless, due to the limitations of each, no single method has been universally adopted. Here, we present a method of data visualization and normalization that is effective, intuitive, and easy to implement in a spreadsheet program. For each plate, the data are ordered by ascending values and a plot thereof yields a curve that is a signature of the plate data. Curve shape characteristics provide intuitive visualization of the frequency and strength of inhibitors, activators, and noise on the plate, allowing potentially problematic plates to be flagged. To reduce plate-to-plate variation, the data can be normalized by the mean of the middle 50% of ordered values, also called the interquartile mean (IQM) or the 50% trimmed mean of the plate. Positional effects due to bias in columns, rows, or wells can be corrected using the interquartile mean of each well position across all plates (IQMW) as a second level of normalization. We illustrate the utility of this method using data sets from biochemical and phenotypic screens.

摘要

对化学和微生物菌株库进行高通量筛选(HTS)是现代化学和系统生物学不可或缺的工具;然而,HTS数据集存在固有的系统误差和随机误差,这可能导致假阳性或假阴性结果。存在几种数据归一化方法;然而,由于每种方法都有局限性,没有一种方法被普遍采用。在这里,我们提出了一种数据可视化和归一化方法,该方法有效、直观且易于在电子表格程序中实现。对于每个平板,数据按升序排列,其绘图会生成一条曲线,该曲线是平板数据的特征。曲线形状特征直观地显示了平板上抑制剂、激活剂和噪声的频率和强度,从而能够标记出可能存在问题的平板。为了减少平板间的差异,可以通过排序后中间50%值的平均值对数据进行归一化,也称为四分位间距均值(IQM)或平板的50%截尾均值。由于列、行或孔中的偏差导致的位置效应可以通过所有平板中每个孔位置的四分位间距均值(IQMW)作为第二层归一化来校正。我们使用来自生化和表型筛选的数据集说明了该方法的实用性。

相似文献

1
Rank ordering plate data facilitates data visualization and normalization in high-throughput screening.
J Biomol Screen. 2014 Oct;19(9):1314-20. doi: 10.1177/1087057114534298. Epub 2014 May 14.
3
Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
J Biomol Screen. 2014 Jun;19(5):661-71. doi: 10.1177/1087057113516003. Epub 2013 Dec 18.
4
Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data.
Bioinformatics. 2015 Dec 1;31(23):3815-21. doi: 10.1093/bioinformatics/btv455. Epub 2015 Aug 7.
5
Improving detection of rare biological events in high-throughput screens.
J Biomol Screen. 2015 Feb;20(2):230-41. doi: 10.1177/1087057114548853. Epub 2014 Sep 4.
7
Experimental design and statistical methods for improved hit detection in high-throughput screening.
J Biomol Screen. 2010 Sep;15(8):990-1000. doi: 10.1177/1087057110377497.
8
GUItars: a GUI tool for analysis of high-throughput RNA interference screening data.
PLoS One. 2012;7(11):e49386. doi: 10.1371/journal.pone.0049386. Epub 2012 Nov 20.
9
Identification and Correction of Additive and Multiplicative Spatial Biases in Experimental High-Throughput Screening.
SLAS Discov. 2018 Jun;23(5):448-458. doi: 10.1177/2472555217750377. Epub 2018 Jan 18.
10
Correction of Microplate Data from High-Throughput Screening.
Methods Mol Biol. 2016;1473:123-34. doi: 10.1007/978-1-4939-6346-1_13.

引用本文的文献

4
A mobile CRISPRi collection enables genetic interaction studies for the essential genes of Escherichia coli.
Cell Rep Methods. 2024 Jan 22;4(1):100693. doi: 10.1016/j.crmeth.2023.100693.
5
Central metabolism is a key player in E. coli biofilm stimulation by sub-MIC antibiotics.
PLoS Genet. 2023 Nov 2;19(11):e1011013. doi: 10.1371/journal.pgen.1011013. eCollection 2023 Nov.
6
Bacteriophage steering of toward reduced virulence and increased antibiotic sensitivity.
J Bacteriol. 2023 Oct 26;205(10):e0019623. doi: 10.1128/jb.00196-23. Epub 2023 Oct 4.
7
Screening under infection-relevant conditions reveals chemical sensitivity in multidrug resistant invasive non-typhoidal (iNTS).
RSC Chem Biol. 2023 Jul 8;4(8):600-612. doi: 10.1039/d3cb00014a. eCollection 2023 Aug 3.
8
Nutrient Limitation Sensitizes to Vancomycin.
ACS Infect Dis. 2023 Jul 14;9(7):1408-1423. doi: 10.1021/acsinfecdis.3c00167. Epub 2023 Jun 6.
9
Inhibiting fatty acid synthesis overcomes colistin resistance.
Nat Microbiol. 2023 Jun;8(6):1026-1038. doi: 10.1038/s41564-023-01369-z. Epub 2023 May 1.

本文引用的文献

1
A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis.
J Biomol Screen. 2013 Aug;18(7):830-6. doi: 10.1177/1087057113486001. Epub 2013 Apr 19.
2
Two effective methods for correcting experimental high-throughput screening data.
Bioinformatics. 2012 Jul 1;28(13):1775-82. doi: 10.1093/bioinformatics/bts262. Epub 2012 May 3.
3
Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy.
Nat Chem Biol. 2011 Jun;7(6):348-50. doi: 10.1038/nchembio.559. Epub 2011 Apr 24.
4
Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.
J Biomol Screen. 2008 Feb;13(2):159-67. doi: 10.1177/1087057107312628. Epub 2008 Jan 23.
5
The academic pursuit of screening.
Nat Chem Biol. 2007 Aug;3(8):433. doi: 10.1038/nchembio0807-433.
6
An efficient method for the detection and elimination of systematic error in high-throughput screening.
Bioinformatics. 2007 Jul 1;23(13):1648-57. doi: 10.1093/bioinformatics/btm145. Epub 2007 Apr 26.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
Statistical analysis of systematic errors in high-throughput screening.
J Biomol Screen. 2005 Sep;10(6):557-67. doi: 10.1177/1087057105276989. Epub 2005 Aug 15.
10
Improved statistical methods for hit selection in high-throughput screening.
J Biomol Screen. 2003 Dec;8(6):634-47. doi: 10.1177/1087057103258285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验