Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel.
PLoS One. 2012;7(5):e36440. doi: 10.1371/journal.pone.0036440. Epub 2012 May 1.
Deciphering the cellular immunome of a bacterial pathogen is challenging due to the enormous number of putative peptidic determinants. State-of-the-art prediction methods developed in recent years enable to significantly reduce the number of peptides to be screened, yet the number of remaining candidates for experimental evaluation is still in the range of ten-thousands, even for a limited coverage of MHC alleles. We have recently established a resource-efficient approach for down selection of candidates and enrichment of true positives, based on selection of predicted MHC binders located in high density "hotspots" of putative epitopes. This cluster-based approach was applied to an unbiased, whole genome search of Francisella tularensis CTL epitopes and was shown to yield a 17-25 fold higher level of responders as compared to randomly selected predicted epitopes tested in Kb/Db C57BL/6 mice. In the present study, we further evaluate the cluster-based approach (down to a lower density range) and compare this approach to the classical affinity-based approach by testing putative CTL epitopes with predicted IC(50) values of <10 nM. We demonstrate that while the percent of responders achieved by both approaches is similar, the profile of responders is different, and the predicted binding affinity of most responders in the cluster-based approach is relatively low (geometric mean of 170 nM), rendering the two approaches complimentary. The cluster-based approach is further validated in BALB/c F. tularensis immunized mice belonging to another allelic restriction (Kd/Dd) group. To date, the cluster-based approach yielded over 200 novel F. tularensis peptides eliciting a cellular response, all were verified as MHC class I binders, thereby substantially increasing the F. tularensis dataset of known CTL epitopes. The generality and power of the high density cluster-based approach suggest that it can be a valuable tool for identification of novel CTLs in proteomes of other bacterial pathogens.
由于假定的肽决定簇数量巨大,因此破译细菌病原体的细胞免疫组是具有挑战性的。近年来开发的最先进的预测方法能够大大减少要筛选的肽的数量,但即使是 MHC 等位基因的有限覆盖范围,仍需要对数千个候选肽进行实验评估。我们最近建立了一种基于选择位于假定表位高密度“热点”中的预测 MHC 结合物的资源高效候选物的方法,用于对候选物进行下游选择和富集真正的阳性。这种基于聚类的方法应用于弗氏志贺氏菌 CTL 表位的无偏全基因组搜索,结果表明与在 Kb / Db C57BL / 6 小鼠中测试的随机选择的预测表位相比,应答者的水平提高了 17-25 倍。在本研究中,我们进一步评估了基于聚类的方法(降低到较低的密度范围),并通过测试具有预测 IC(50)值<10 nM 的假定 CTL 表位,将这种方法与经典的基于亲和力的方法进行了比较。我们证明,尽管两种方法达到的应答者百分比相似,但应答者的特征不同,并且基于聚类的方法中大多数应答者的预测结合亲和力相对较低(几何平均值为 170 nM),使得两种方法互补。基于聚类的方法在属于另一种等位基因限制(Kd / Dd)组的 BALB / c 弗氏志贺氏菌免疫小鼠中进一步得到验证。迄今为止,基于聚类的方法已经产生了 200 多个新的弗氏志贺氏菌肽,引起了细胞反应,所有这些肽均被验证为 MHC 类 I 结合物,从而大大增加了已知的弗氏志贺氏菌 CTL 表位数据集。高密度聚类方法的通用性和有效性表明,它可以成为鉴定其他细菌病原体蛋白质组中新型 CTL 的有价值的工具。