Suppr超能文献

综合计算预测和实验验证鉴定. 蛋白质组中的广谱 T 细胞表位。

Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of .

机构信息

1​School of Veterinary Medicine, University College Dublin, Dublin D4, Ireland.

2​Department of Bacteriology, Animal and Plant Health Agency, New Haw, Surrey KT15 3NB, UK.

出版信息

Microb Genom. 2016 Aug 25;2(8):e000071. doi: 10.1099/mgen.0.000071. eCollection 2016 Aug.

Abstract

The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control programmes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by CD4 T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To comprehensively prioritise potential MHC-II-binding epitopes from , the agent of bTB and zoonotic TB in humans, we integrated three binding prediction methods with the proteome using a subset of human HLA alleles to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of binders. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive interferon-γ secretion from T cells of infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this validation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strategies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic diversity.

摘要

发现新的抗原是设计针对人类结核病(TB)和牛结核病(bTB)的新诊断或疫苗的必要条件。鉴定被 CD4 T 细胞识别的潜在表位需要预测肽与 MHC 类 II 的结合,这是 T 细胞识别的必要前提。为了全面优先考虑潜在的 MHC-II 结合表位,我们整合了三种结合预测方法和使用人类 HLA 等位基因子集的蛋白质组来近似含有表位的肽与牛 MHC 类 II 分子 BoLA-DRB3 的结合。然后应用两种平行策略来筛选结合的表位:鉴定得分最高的结合表位或结合表位簇。我们的方法通过评估预测的杂乱肽从感染牛的 T 细胞中驱动干扰素-γ分泌的能力进行了实验测试。因此,合成了 376 个 20 肽(270 个预测表位、94 个预测得分低的随机肽和 12 个已知表位的阳性对照)。验证结果表明,与随机选择的预测得分低的肽相比,我们的选择策略中预测的杂乱识别肽有显著富集(>24%)。我们的策略为针对 MHC 等位基因多样性知识有限的目标人群中杂乱表位的鉴定提供了一种通用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验