Max Planck Institute of Quantum Optics and Center for NanoScience, 85748 Garching, Germany.
Beilstein J Nanotechnol. 2012;3:312-23. doi: 10.3762/bjnano.3.35. Epub 2012 Apr 5.
Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR) spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM). On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon) resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.
基于 X 射线、电子、隧道或力显微镜的纳米复合材料成像方法提供了关于纳米颗粒形状的信息;然而,所有这些方法都无法进行化学识别。它们也无法进行矿物类型的局部识别。我们证明,近场红外显微镜以 20nm 的空间分辨率解决了这些要求,突出了其在天然纳米结构中的首次应用,即壳和骨中的矿物颗粒。“纳米傅里叶变换红外(Nano-FTIR)”光谱图像是傅里叶变换红外(FTIR)光谱与散射扫描近场光学显微镜(s-SNOM)相结合的结果。在贻贝壳的抛光切片上,我们观察到所有生物方解微晶体中都存在可重复的振动(声子)共振,而生物文石则具有明显不同的光谱。令人惊讶的是,我们发现了以前未知的、稀疏的 20nm 厚纳米颗粒,其光谱特征明显是结晶磷酸盐。在人牙切片上观察到多组分磷酸盐带。这些光谱在牙本质小管附近具有特征性变化,证明了磷灰石纳米晶体的化学或结构变化。红外带强度与电子显微镜确定的矿物密度相关。由于纳米傅里叶变换红外对结构无序敏感,因此非常适合研究生物矿化形成和老化。一般来说,纳米傅里叶变换红外适用于任何学科的复合材料分析和识别,从纳米制造过程中的测试到骨病的临床研究。