Suppr超能文献

评估 DOCK 6 作为构象生成和数据库丰富工具的性能。

Evaluation of DOCK 6 as a pose generation and database enrichment tool.

机构信息

BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.

出版信息

J Comput Aided Mol Des. 2012 Jun;26(6):749-73. doi: 10.1007/s10822-012-9565-y. Epub 2012 May 9.

Abstract

In conjunction with the recent American Chemical Society symposium titled "Docking and Scoring: A Review of Docking Programs" the performance of the DOCK6 program was evaluated through (1) pose reproduction and (2) database enrichment calculations on a common set of organizer-specified systems and datasets (ASTEX, DUD, WOMBAT). Representative baseline grid score results averaged over five docking runs yield a relatively high pose identification success rate of 72.5 % (symmetry corrected rmsd) and sampling rate of 91.9 % for the multi site ASTEX set (N = 147) using organizer-supplied structures. Numerous additional docking experiments showed that ligand starting conditions, symmetry, multiple binding sites, clustering, and receptor preparation protocols all affect success. Encouragingly, in some cases, use of more sophisticated scoring and sampling methods yielded results which were comparable (Amber score ligand movable protocol) or exceeded (LMOD score) analogous baseline grid-score results. The analysis highlights the potential benefit and challenges associated with including receptor flexibility and indicates that different scoring functions have system dependent strengths and weaknesses. Enrichment studies with the DUD database prepared using the SB2010 preparation protocol and native ligand pairings yielded individual area under the curve (AUC) values derived from receiver operating characteristic curve analysis ranging from 0.29 (bad enrichment) to 0.96 (good enrichment) with an average value of 0.60 (27/38 have AUC ≥ 0.5). Strong early enrichment was also observed in the critically important 1.0-2.0 % region. Somewhat surprisingly, an alternative receptor preparation protocol yielded comparable results. As expected, semi-random pairings yielded poorer enrichments, in particular, for unrelated receptors. Overall, the breadth and number of experiments performed provide a useful snapshot of current capabilities of DOCK6 as well as starting points to guide future development efforts to further improve sampling and scoring.

摘要

与最近美国化学学会的研讨会“对接和评分:对接程序综述”相结合,通过(1)构象再现和(2)在一组常见的组织者指定的系统和数据集(ASTEX、DUD、WOMBAT)上进行数据库富集计算,评估了 DOCK6 程序的性能。使用组织者提供的结构,代表五次对接运行的平均基线网格评分结果,对于多站点 ASTEX 集(N=147),相对较高的构象识别成功率为 72.5%(对称校正 RMSD)和 91.9%的采样率。许多额外的对接实验表明,配体起始条件、对称性、多个结合位点、聚类和受体准备方案都影响成功率。令人鼓舞的是,在某些情况下,使用更复杂的评分和采样方法可以得到可比(Amber 评分配体可动性方案)或超过(LMOD 评分)类似的基线网格评分结果。该分析突出了包含受体灵活性的潜在好处和挑战,并表明不同的评分函数具有系统相关的优缺点。使用 SB2010 准备方案准备的 DUD 数据库的富集研究和天然配体配对,从接收器操作特性曲线分析中得出了个体曲线下面积(AUC)值,范围从 0.29(富集不良)到 0.96(富集良好),平均值为 0.60(27/38 的 AUC≥0.5)。在至关重要的 1.0-2.0%区域也观察到了强烈的早期富集。令人有些惊讶的是,替代的受体准备方案产生了可比的结果。正如预期的那样,半随机配对产生了较差的富集,特别是对于不相关的受体。总的来说,所进行的广度和数量的实验提供了对 DOCK6 当前能力的有用快照,以及指导未来发展努力以进一步提高采样和评分的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e93a/3902891/e80e2b011432/nihms-541331-f0001.jpg

相似文献

1
Evaluation of DOCK 6 as a pose generation and database enrichment tool.评估 DOCK 6 作为构象生成和数据库丰富工具的性能。
J Comput Aided Mol Des. 2012 Jun;26(6):749-73. doi: 10.1007/s10822-012-9565-y. Epub 2012 May 9.
5
Surflex-Dock: Docking benchmarks and real-world application.Surflex-Dock:对接基准测试和实际应用。
J Comput Aided Mol Des. 2012 Jun;26(6):687-99. doi: 10.1007/s10822-011-9533-y. Epub 2012 May 9.

引用本文的文献

5
Descriptor-Driven de Novo Design Algorithms for DOCK6 Using RDKit.基于 RDKit 的 DOCK6 的描述符驱动从头设计算法。
J Chem Inf Model. 2023 Sep 25;63(18):5803-5822. doi: 10.1021/acs.jcim.3c01031. Epub 2023 Sep 12.
10
Protein-Ligand Docking in the Machine-Learning Era.蛋白质-配体对接在机器学习时代。
Molecules. 2022 Jul 18;27(14):4568. doi: 10.3390/molecules27144568.

本文引用的文献

8
Investigation of MM-PBSA rescoring of docking poses.对接姿势的MM-PBSA重新评分研究。
J Chem Inf Model. 2008 May;48(5):1081-91. doi: 10.1021/ci700470c. Epub 2008 May 9.
9
Recommendations for evaluation of computational methods.计算方法评估建议。
J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):133-9. doi: 10.1007/s10822-008-9196-5. Epub 2008 Mar 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验