Suppr超能文献

苹果(Malus×domestica Borkh.)果实品质性状的基因组选择。

Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.).

机构信息

The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.

出版信息

PLoS One. 2012;7(5):e36674. doi: 10.1371/journal.pone.0036674. Epub 2012 May 4.

Abstract

The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2) = 0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.

摘要

苹果(Malus×domestica Borkh.)基因组序列在一年多前公布,这有助于开发出 8K SNP 芯片,以辅助实施基因组选择(GS)。在苹果育种计划中,GS 可用于获得基因组育种值(GEBV),以便在非常早期阶段选择下一代亲本或选择进行进一步测试作为潜在的商业品种。因此,由于世代间隔缩短或选择强度增加,GS 有可能显著提高育种效率。我们评估了 GS 在由四个雌性和两个雄性亲本的因子交配设计生成的 1120 个苗种群中的准确性。所有苗种均使用包含 8000 个单核苷酸多态性(SNP)的 Illumina Infinium 芯片进行基因型分析,并对各种果实品质性状进行表型分析。随机回归最佳线性无偏预测(RR-BLUP)和贝叶斯 LASSO 方法用于获得 GEBV,并通过交叉验证方法比较它们预测未观察到的 BLUP-BV 的准确性。对于各种果实品质性状,这两种方法的准确性非常相似,从 0.70 到 0.90 不等。与传统基于 BLUP 的选择相比,使用 GS 的选择响应速度非常高(>100%),特别是对于低遗传力性状。相邻 SNP 之间的全基因组平均估计连锁不平衡(LD)为 0.32,LD 在长距离上的衰减相对较慢(r(2)分别为 0.33 和 0.19,在 100 kb 和 1000 kb 处),这有助于提高 GS 的准确性。估计 SNP 效应的分布表明涉及具有可能多效性的大效应基因。这些结果表明,基因组选择是果实品质性状传统选择的可靠替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a3/3344927/8bc798421052/pone.0036674.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验