Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
Acc Chem Res. 2012 Jun 19;45(6):923-35. doi: 10.1021/ar300013t. Epub 2012 May 11.
The development of methods for the stereoselective functionalization of sp(3) C-H bonds is a challenging undertaking. This Account describes the scope of the combined C-H functionalization/Cope rearrangement (CHCR), a reaction that occurs between rhodium-stabilized vinylcarbenoids and substrates containing allylic C-H bonds. Computational studies have shown that the CHCR reaction is initiated by a hydride transfer to the carbenoid from an allyl site on the substrate, which is then rapidly followed by C-C bond formation between the developing rhodium-bound allyl anion and the allyl cation. In principle, the reaction can proceed through four distinct orientations of the vinylcarbenoid and the approaching substrate. The early examples of the CHCR reaction were all highly diastereoselective, consistent with a reaction proceeding via a chair transition state with the vinylcarbenoid adopting an s-cis conformation. Recent computational studies have revealed that other transition state orientations are energetically accessible, and these results have guided the development of highly stereoselective CHCR reactions that proceed through a boat transition state with the vinylcarbenoid in an s-cis configuration. The CHCR reaction has broad applications in organic synthesis. In some new protocols, the CHCR reaction acts as a surrogate to some of the classic synthetic strategies in organic chemistry. The CHCR reaction has served as a synthetic equivalent of the Michael reaction, the vinylogous Mukaiyama aldol reaction, the tandem Claisen rearrangement/Cope rearrangement, and the tandem aldol reaction/siloxy-Cope rearrangement. In all of these cases, the products are generated with very high diastereocontrol. With a chiral dirhodium tetracarboxylate catalyst such as Rh(2)(S-DOSP)(4) or Rh(2)(S-PTAD)(4), researchers can achieve very high levels of asymmetric induction. Applications of the CHCR reaction include the effective enantiodifferentiation of racemic dihydronaphthalenes and the total synthesis of several natural products: (-)-colombiasin A, (-)-elisapterosin B, and (+)-erogorgiaene. By combining the CHCR reaction into a further cascade sequence, we and other researchers have achieved the asymmetric synthesis of 4-substituted indoles, a new class of monoamine reuptake inhibitors.
sp³C-H 键的立体选择性功能化方法的发展是一项具有挑战性的任务。本综述描述了铑稳定的乙烯型碳烯与含有烯丙基 C-H 键的底物之间发生的协同 C-H 官能化/Cope 重排(CHCR)反应的范围。计算研究表明,CHCR 反应是通过从底物上的烯丙基位置向碳烯转移氢化物引发的,随后迅速在形成的铑键合烯丙基阴离子和烯丙基阳离子之间形成 C-C 键。原则上,反应可以通过乙烯型碳烯和接近的底物的四个不同取向进行。CHCR 反应的早期实例都是高度非对映选择性的,与通过具有乙烯型碳烯采用 s-顺构象的椅式过渡态进行的反应一致。最近的计算研究表明,其他过渡态取向在能量上是可及的,这些结果指导了通过乙烯型碳烯采用 s-顺构象的船过渡态进行的高立体选择性 CHCR 反应的发展。CHCR 反应在有机合成中有广泛的应用。在一些新的方案中,CHCR 反应充当了一些经典有机合成策略的替代物。CHCR 反应已成为迈克尔反应、烯醇式 Mukaiyama 醛缩合反应、串联 Claisen 重排/Cope 重排和串联醛缩合反应/硅氧基-Cope 重排的合成等价物。在所有这些情况下,产物都具有非常高的非对映选择性控制。使用手性二铑四羧酸酯催化剂,如 Rh(2)(S-DOSP)(4)或 Rh(2)(S-PTAD)(4),研究人员可以实现非常高水平的不对称诱导。CHCR 反应的应用包括对映体选择性拆分外消旋二氢萘和几种天然产物的全合成:(-)-colombiasin A、(-)-elisapterosin B 和 (+)-erogorgiaene。通过将 CHCR 反应组合到进一步的级联序列中,我们和其他研究人员已经实现了 4-取代吲哚的不对称合成,这是一类新的单胺再摄取抑制剂。