Suppr超能文献

Fgfr1 和 Fgfr2 双基因敲除小鼠运动协调能力受损和小脑结构破坏。

Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice.

机构信息

Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, USA.

出版信息

Brain Res. 2012 Jun 15;1460:12-24. doi: 10.1016/j.brainres.2012.04.002. Epub 2012 Apr 11.

Abstract

Fibroblast growth factor receptor (FGFR) signaling determines the size of the cerebral cortex by regulating the amplification of radial glial stem cells, and participates in the formation of midline glial structures. We show that Fgfr1 and Fgfr2 double knockouts (FGFR DKO) generated by Cre-mediated recombination driven by the human GFAP promoter (hGFAP) have reduced cerebellar size due to reduced proliferation of radial glia and other glial precursors in late embryonic and neonatal FGFR DKO mice. The proliferation of granule cell progenitors (GCPs) in the EGL was also reduced, leading to reduced granule cell numbers. Furthermore, both inward migration of granule cells into the inner granule cell layer (IGL) and outward migration of GABA interneurons into the molecular layer (ML) were arrested, disrupting layer and lobular morphology. Purkinje neurons and their dendrites, which were not targeted by Cre-mediated recombination of Fgf receptors, were also misplaced in FGFR DKO mice, possibly as a consequence of altered Bergmann glia orientation or reduced granule cell number. Our findings indicate a dual role for FGFR signaling in cerebellar morphogenesis. The first role is to amplify the number of granule neuron precursors in the external granular layer and glial precursor cells throughout the cerebellum. The second is to establish the correct Bergmann glia morphology, which is crucial for granule cell migration. The disrupted cerebellar size and laminar architecture resulting from loss of FGFR signaling impair motor learning and coordination in FGFR DKO mice.

摘要

成纤维细胞生长因子受体 (FGFR) 信号通过调节放射状胶质干细胞的扩增来决定大脑皮层的大小,并参与中线胶质结构的形成。我们表明,由人类 GFAP 启动子 (hGFAP) 驱动的 Cre 介导重组产生的 Fgfr1 和 Fgfr2 双敲除 (FGFR DKO) 小鼠由于晚期胚胎和新生 FGFR DKO 小鼠中放射状胶质和其他神经前体细胞的增殖减少,小脑体积减小。颗粒细胞祖细胞 (GCP) 在 EGL 中的增殖也减少,导致颗粒细胞数量减少。此外,颗粒细胞向内迁移到内颗粒细胞层 (IGL) 和 GABA 中间神经元向外迁移到分子层 (ML) 都被阻断,破坏了层和小叶形态。未被 Cre 介导的 Fgf 受体重组靶向的浦肯野神经元及其树突在 FGFR DKO 小鼠中也发生错位,可能是由于 Bergmann 胶质方向改变或颗粒细胞数量减少所致。我们的研究结果表明 FGFR 信号在小脑形态发生中具有双重作用。第一个作用是在外颗粒层中扩增颗粒神经元前体细胞的数量,并在整个小脑扩增神经前体细胞和神经胶质前体细胞。第二个作用是建立正确的 Bergmann 胶质形态,这对于颗粒细胞迁移至关重要。由于 FGFR 信号缺失导致小脑大小和层状结构破坏,从而损害了 FGFR DKO 小鼠的运动学习和协调能力。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验