Suppr超能文献

混合模型方法在二项式检验结果诊断研究的荟萃分析中的应用。

A mixed model approach to meta-analysis of diagnostic studies with binary test outcome.

机构信息

Faculty of Psychology and Sport Science, University of Münster,Fliednerstrasse 21, D-48149 Münster, Germany.

出版信息

Psychol Methods. 2012 Sep;17(3):418-36. doi: 10.1037/a0028091. Epub 2012 May 14.

Abstract

We propose 2 related models for the meta-analysis of diagnostic tests. Both models are based on the bivariate normal distribution for transformed sensitivities and false-positive rates. Instead of using the logit as a transformation for these proportions, we employ the tα family of transformations that contains the log, logit, and (approximately) the complementary log. A likelihood ratio test for the cutoff value problem is developed, and summary receiver operating characteristic (SROC) curves are discussed. Worked examples showcase the methodology. We compare the models to the hierarchical SROC model, which in contrast employs a logit transformation. Data from various meta-analyses are reanalyzed, and the reanalysis indicates a better performance of the models based on the tα transformation.

摘要

我们提出了两种用于诊断测试的荟萃分析的相关模型。这两种模型都是基于转换后的敏感度和假阳性率的双变量正态分布。我们没有使用对数作为这些比例的转换,而是使用了 tα 变换族,它包含对数、对数比和(近似)互补对数。为了处理截断值问题,我们开发了似然比检验,并讨论了综合接收者操作特性(SROC)曲线。实例展示了该方法。我们将这些模型与分层 SROC 模型进行了比较,后者则采用了对数比转换。重新分析了来自不同荟萃分析的数据,重新分析表明,基于 tα 变换的模型表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验