Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
Microb Cell Fact. 2012 May 18;11:62. doi: 10.1186/1475-2859-11-62.
Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli.
Because the redox enzymes can reduce the disulfide that forms on proteins, we first tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coliL-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI and ΔcysJ) and the L-cysteine synthase gene (ΔcysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (ΔcysC or ΔcysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coliL-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell.
In this work, we showed that Grx1 and NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production.
大肠杆菌有两条 L-半胱氨酸生物合成途径;一条途径是由 L-半胱氨酸合酶(CysK)从 O-乙酰-L-丝氨酸(OAS)和硫酸盐合成的,另一条途径是由 S-磺酰半胱氨酸(SSC)从 OAS 和硫代硫酸盐通过 SSC 合酶(CysM)生成的。SSC 通过未鉴定的反应转化为 L-半胱氨酸和亚硫酸盐。由于硫氧还蛋白(Trx1 和 Trx2)和谷氧还蛋白(Grx1、Grx2、Grx3、Grx4 和 NrdH)被认为是肽二硫键的还原酶,因此过表达这些还原酶可能是提高 L-半胱氨酸产量的好方法,可加速大肠杆菌中 SSC 的还原。
由于氧化还原酶可以还原蛋白质上形成的二硫键,我们首先测试了这些酶是否催化 SSC 还原为 L-半胱氨酸。除了 Grx4 之外,所有带有 His 标签的重组酶都能有效地将 SSC 在体外转化为 L-半胱氨酸。Grx1 和 NrdH 的过表达使大肠杆菌 L-半胱氨酸的产量提高了 15-40%。另一方面,Grx1 和 NrdH 的过表达导致 cysM 基因缺失的效果消失,表明其改善是由于发酵条件下 SSC 的有效还原。此外,亚硫酸盐还原酶基因(ΔcysI 和 ΔcysJ)和 L-半胱氨酸合酶基因(ΔcysK)的缺失突变体中 L-半胱氨酸的产量均降低至野生型菌株的约 50%。有趣的是,在亚硫酸盐上游途径(ΔcysC 或 ΔcysH)的基因缺失突变体与野生型菌株之间,L-半胱氨酸的产量没有显著差异。这些结果表明,由 SSC 还原产生的亚硫酸盐可用作产生额外 L-半胱氨酸分子的硫源。最后发现,在共过表达谷氧还蛋白(NrdH)、亚硫酸盐还原酶(CysI)和 L-半胱氨酸合酶(CysK)的大肠杆菌 L-半胱氨酸生产菌中,每个细胞产生的 L-半胱氨酸最多。
在这项工作中,我们表明 Grx1 和 NrdH 将 SSC 还原为 L-半胱氨酸,生成的亚硫酸盐然后通过大肠杆菌中的硫酸盐途径被利用作为硫源来产生额外的 L-半胱氨酸分子。我们还发现,NrdH、CysI 和 CysK 的共过表达增加了 L-半胱氨酸的产量。我们的结果表明,增强由 SSC 介导的硫氧还蛋白/谷氧还蛋白的 L-半胱氨酸合成是提高 L-半胱氨酸产量的一种新方法。