Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
Adv Protein Chem Struct Biol. 2012;87:363-89. doi: 10.1016/B978-0-12-398312-1.00012-3.
The catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is an exquisite example of a single molecule allosteric enzyme, where classical and modern views of allosteric signaling merge. In this chapter, we describe the mapping of PKA-C conformational dynamics and allosteric signaling in the free and bound states using a combination of NMR spectroscopy and molecular dynamics simulations. We show that ligand binding affects the enzyme's conformational dynamics, shaping the free-energy landscape toward the next stage of the catalytic cycle. While nucleotide and substrate binding enhance the enzyme's conformational entropy and define dynamically committed states, inhibitor binding attenuates the internal dynamics in favor of enthalpic interactions and delineates dynamically quenched states. These studies support a central role of conformational dynamics in many aspects of enzymatic turnover and suggest future avenues for controlling enzymatic function.
cAMP 依赖性蛋白激酶 A(PKA-C)的催化亚基是单一分子变构酶的一个极好范例,其中经典和现代的变构信号观点融为一体。在本章中,我们使用 NMR 光谱和分子动力学模拟相结合的方法,描述了在游离态和结合态下 PKA-C 构象动力学和变构信号的映射。我们表明,配体结合会影响酶的构象动力学,将自由能景观塑造为催化循环的下一个阶段。虽然核苷酸和底物结合会增强酶的构象熵,并定义动态约束状态,但抑制剂结合会削弱内部动力学,有利于焓相互作用,并描绘出动态猝灭状态。这些研究支持构象动力学在酶周转的许多方面中起着核心作用,并为控制酶功能提供了未来的途径。