Suppr超能文献

相似文献

1
A position-specific distance-dependent statistical potential for protein structure and functional study.
Structure. 2012 Jun 6;20(6):1118-26. doi: 10.1016/j.str.2012.04.003. Epub 2012 May 17.
2
Improving the orientation-dependent statistical potential using a reference state.
Proteins. 2014 Oct;82(10):2383-93. doi: 10.1002/prot.24600. Epub 2014 Jun 3.
3
Random Forest Refinement of the KECSA2 Knowledge-Based Scoring Function for Protein Decoy Detection.
J Chem Inf Model. 2019 May 28;59(5):1919-1929. doi: 10.1021/acs.jcim.8b00734. Epub 2019 Feb 20.
4
Novel knowledge-based mean force potential at the profile level.
BMC Bioinformatics. 2006 Jun 27;7:324. doi: 10.1186/1471-2105-7-324.
5
Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures.
Proteins. 2011 Sep;79(9):2648-61. doi: 10.1002/prot.23086. Epub 2011 Jul 5.
6
Effective knowledge-based potentials.
Protein Sci. 2009 Jul;18(7):1469-85. doi: 10.1002/pro.166.
8
9
Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model.
Biophys J. 2018 Sep 4;115(5):809-821. doi: 10.1016/j.bpj.2018.07.035. Epub 2018 Aug 8.

引用本文的文献

1
Inter-Residue Distance Prediction From Duet Deep Learning Models.
Front Genet. 2022 May 16;13:887491. doi: 10.3389/fgene.2022.887491. eCollection 2022.
2
Structure-conditioned amino-acid couplings: How contact geometry affects pairwise sequence preferences.
Protein Sci. 2022 Apr;31(4):900-917. doi: 10.1002/pro.4280. Epub 2022 Feb 15.
3
Enhancing protein inter-residue real distance prediction by scrutinising deep learning models.
Sci Rep. 2022 Jan 17;12(1):787. doi: 10.1038/s41598-021-04441-y.
5
Improved protein structure prediction by deep learning irrespective of co-evolution information.
Nat Mach Intell. 2021 Jul;3:601-609. doi: 10.1038/s42256-021-00348-5. Epub 2021 May 20.
6
Representations of protein structure for exploring the conformational space: A speed-accuracy trade-off.
Comput Struct Biotechnol J. 2021 Apr 28;19:2618-2625. doi: 10.1016/j.csbj.2021.04.049. eCollection 2021.
7
Deep template-based protein structure prediction.
PLoS Comput Biol. 2021 May 3;17(5):e1008954. doi: 10.1371/journal.pcbi.1008954. eCollection 2021 May.
8
Crystallographic molecular replacement using an in silico-generated search model of SARS-CoV-2 ORF8.
Protein Sci. 2021 Apr;30(4):728-734. doi: 10.1002/pro.4050. Epub 2021 Mar 4.
9
Hybrid methods for combined experimental and computational determination of protein structure.
J Chem Phys. 2020 Dec 28;153(24):240901. doi: 10.1063/5.0026025.
10
Improved protein structure prediction using potentials from deep learning.
Nature. 2020 Jan;577(7792):706-710. doi: 10.1038/s41586-019-1923-7. Epub 2020 Jan 15.

本文引用的文献

1
Protein Folding: A Perspective from Theory and Experiment.
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):868-893. doi: 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H.
2
Boosting Protein Threading Accuracy.
Res Comput Mol Biol. 2009;5541:31-45. doi: 10.1007/978-3-642-02008-7_3.
4
RaptorX: exploiting structure information for protein alignment by statistical inference.
Proteins. 2011;79 Suppl 10(Suppl 10):161-71. doi: 10.1002/prot.23175. Epub 2011 Oct 11.
5
Protein 8-class secondary structure prediction using conditional neural fields.
Proteomics. 2011 Oct;11(19):3786-92. doi: 10.1002/pmic.201100196. Epub 2011 Aug 31.
7
Incorporation of local structural preference potential improves fold recognition.
PLoS One. 2011 Feb 18;6(2):e17215. doi: 10.1371/journal.pone.0017215.
8
Incorporating Ab Initio energy into threading approaches for protein structure prediction.
BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S54. doi: 10.1186/1471-2105-12-S1-S54.
10
Protein loop modeling by using fragment assembly and analytical loop closure.
Proteins. 2010 Dec;78(16):3428-36. doi: 10.1002/prot.22849. Epub 2010 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验