Kundu Madan G, Harezlak Jaroslaw, Randolph Timothy W
Novartis Pharmaceuticals Corporation (Oncology) East Hanover, NJ, USA.
Department of Biostatistics, Indiana University RM Fairbanks School of Public Health, IN, USA.
Stat Modelling. 2016 Apr;16(2):114-139. doi: 10.1177/1471082X15626291. Epub 2016 Feb 17.
This article addresses estimation in regression models for longitudinally-collected functional covariates (time-varying predictor curves) with a longitudinal scaler outcome. The framework consists of estimating a time-varying coefficient function that is modeled as a linear combination of time-invariant functions with time-varying coefficients. The model uses extrinsic information to inform the structure of the penalty, while the estimation procedure exploits the equivalence between penalized least squares estimation and a linear mixed model representation. The process is empirically evaluated with several simulations and it is applied to analyze the neurocognitive impairment of HIV patients and its association with longitudinally-collected magnetic resonance spectroscopy (MRS) curves.
本文探讨了具有纵向标量结果的纵向收集的功能协变量(随时间变化的预测曲线)回归模型中的估计问题。该框架包括估计一个随时间变化的系数函数,该函数被建模为具有随时间变化系数的时不变函数的线性组合。该模型使用外部信息来确定惩罚结构,而估计过程利用了惩罚最小二乘估计与线性混合模型表示之间的等价性。通过多次模拟对该过程进行了实证评估,并将其应用于分析HIV患者的神经认知障碍及其与纵向收集的磁共振波谱(MRS)曲线的关联。