Suppr超能文献

通过主坐标进行惩罚非参数函数标量回归

Penalized nonparametric scalar-on-function regression via principal coordinates.

作者信息

Reiss Philip T, Miller David L, Wu Pei-Shien, Hua Wen-Yu

机构信息

Department of Child and Adolescent Psychiatry and Department of Population Health, New York University, USA and Department of Statistics, University of Haifa, Israel.

Integrated Statistics, Woods Hole, Massachusetts, USA and Centre for Research into Ecological and Environmental Modelling and School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, United Kingdom.

出版信息

J Comput Graph Stat. 2017;26(3):569-578. doi: 10.1080/10618600.2016.1217227. Epub 2016 Aug 2.

Abstract

A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call , one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model.

摘要

最近,一些经典的非参数回归方法已扩展到函数型预测变量的情况。本文介绍了一种此类新方法,它将中间秩惩罚平滑扩展到函数对标量的回归。在所提出的方法(我们称之为 )中,人们将响应变量对由函数型预测变量之间的相关距离定义的主坐标进行回归,同时应用岭惩罚。我们基于广义相加模型软件的公开可用实现,允许快速进行最优调优参数选择,并可扩展到多个函数型预测变量、指数族值响应变量以及混合效应模型。在一个签名验证数据的应用中,使用动态时间规整距离来定义主坐标的主坐标岭回归被证明优于函数型广义线性模型。

相似文献

1
Penalized nonparametric scalar-on-function regression via principal coordinates.
J Comput Graph Stat. 2017;26(3):569-578. doi: 10.1080/10618600.2016.1217227. Epub 2016 Aug 2.
2
Structured functional additive regression in reproducing kernel Hilbert spaces.
J R Stat Soc Series B Stat Methodol. 2014 Jun 1;76(3):581-603. doi: 10.1111/rssb.12036.
3
Penalized spline estimation for functional coefficient regression models.
Comput Stat Data Anal. 2010 Apr 1;54(4):891-905. doi: 10.1016/j.csda.2009.09.036.
5
Fast function-on-scalar regression with penalized basis expansions.
Int J Biostat. 2010;6(1):Article 28. doi: 10.2202/1557-4679.1246.
6
A ridge penalized principal-components approach based on heritability for high-dimensional data.
Hum Hered. 2007;64(3):182-91. doi: 10.1159/000102991. Epub 2007 May 25.
7
Globaltest confidence regions and their application to ridge regression.
Biom J. 2021 Oct;63(7):1351-1365. doi: 10.1002/bimj.202000063. Epub 2021 May 27.
8
Methods for scalar-on-function regression.
Int Stat Rev. 2017 Aug;85(2):228-249. doi: 10.1111/insr.12163. Epub 2016 Feb 23.
9
Interaction Models for Functional Regression.
Comput Stat Data Anal. 2016 Feb 1;94:317-329. doi: 10.1016/j.csda.2015.08.020.
10
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.

引用本文的文献

1
Regression and alignment for functional data and network topology.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae026.

本文引用的文献

1
Methods for scalar-on-function regression.
Int Stat Rev. 2017 Aug;85(2):228-249. doi: 10.1111/insr.12163. Epub 2016 Feb 23.
3
Optimally weighted L(2) distance for functional data.
Biometrics. 2014 Sep;70(3):516-25. doi: 10.1111/biom.12161. Epub 2014 Mar 13.
5
Fast function-on-scalar regression with penalized basis expansions.
Int J Biostat. 2010;6(1):Article 28. doi: 10.2202/1557-4679.1246.
6
Functional generalized linear models with images as predictors.
Biometrics. 2010 Mar;66(1):61-9. doi: 10.1111/j.1541-0420.2009.01233.x. Epub 2009 May 8.
7
Examining the relative influence of familial, genetic, and environmental covariate information in flexible risk models.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8128-33. doi: 10.1073/pnas.0902906106. Epub 2009 May 6.
8
Framework for kernel regularization with application to protein clustering.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12332-7. doi: 10.1073/pnas.0505411102. Epub 2005 Aug 18.
9
Multidimensional scaling of similarity.
Psychometrika. 1965 Dec;30(4):379-93. doi: 10.1007/BF02289530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验