Neurobiology and Development, UPR, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
BMC Biol. 2012 May 29;10:45. doi: 10.1186/1741-7007-10-45.
The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates.
The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments.
We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins).
We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina.
有观点提出,颅类/脊椎动物的视网膜起源于脊索动物祖先的感光前脑区域,但对于构成视网膜的不同细胞类型的进化起源仍存在争议。除了感光细胞,在脊椎动物之外,视网膜细胞的同源物是否存在仍不确定。
通过原位杂交或相应调控元件的体内转染,分析文昌鱼(Ciona intestinalis)感觉囊泡中表达的基因的表达,这些基因包括编码单胺能神经递质传递系统成分的基因。通过电生理学结合药理学处理研究单胺对光反应的调节。
我们发现,文昌鱼感觉囊泡中靠近感光器的多巴胺合成细胞具有许多分子特征,与脊椎动物视网膜中的无长突多巴胺细胞相似。文昌鱼多巴胺细胞与脊椎动物无长突细胞一样,表达关键转录因子 Ptf1a 以及多巴胺合成酶。令人惊讶的是,文昌鱼多巴胺细胞通过功能性血清素转运体积累血清素,就像一些无长突细胞一样。此外,位于感光器附近的多巴胺细胞通过作用于α2 样受体而不是多巴胺受体来调节文昌鱼幼虫的光熄灭诱导的游泳行为,这支持了它们在光反应调节中的作用。这些细胞位于文昌鱼感觉囊泡的一个区域,该区域表达在脊椎动物的视网膜和下丘脑中都发现的基因(six3/6、Rx、meis、pax6、视觉循环蛋白)。
我们提出,文昌鱼幼虫的多巴胺细胞源自位于脊索动物前神经管脑室周围、感光区的祖先多功能细胞群,该细胞群也在颅类/脊椎动物中产生前下丘脑和视网膜。这也表明与光反应相关的多种细胞类型的存在早于脊椎动物视网膜的形成。