Suppr超能文献

细菌和 Mn 氧化物对亚砷酸盐氧化动力学的相加和竞争作用。

Additive and competitive effects of bacteria and Mn oxides on arsenite oxidation kinetics.

机构信息

Department of Plant & Soil Sciences, University of Delaware, Newark, Delaware, United States.

出版信息

Environ Sci Technol. 2012 Jun 19;46(12):6548-55. doi: 10.1021/es204252f. Epub 2012 Jun 4.

Abstract

Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on oxidation state. Arsenite [As(III)] can be oxidized to arsenate [As(V)] by both minerals and microbes in soil however, the interaction between these abiotic and biotic processes is not well understood. In this study, the time dependency of As(III) oxidation by two heterotrophic soil bacteria (Agrobacterium tumefaciens and Pseudomonas fluorescens) and a poorly crystalline manganese (Mn) oxide mineral (δ-MnO(2)) was determined using batch experiments. The apparent rate of As(V) appearance in solution was greater for the combined batch experiments in which bacteria and δ-MnO(2) were oxidizing As(III) at the same time than for either component alone. The additive effect of the mixed cell- δ-MnO(2) system was consistent for short (<1 h) and long (24 h) term coincubation indicating that mineral surface inhibition by cells has little effect the As(III) oxidation rate. Surface interactions between cells and the mineral surface were indicated by sorption and pH-induced desorption results. Total sorption of As on the mineral was lower with bacteria present (16.1 ± 0.8% As sorbed) and higher with δ-MnO(2) alone (23.4 ± 1%) and As was more easily desorbed from the cell-δ-MnO(2) system than from δ-MnO(2) alone. Therefore, the presence of bacteria inhibited As sorption and decreased the stability of sorbed As on δ-MnO(2) even though As(III) was oxidized fastest in a mixed cell-δ-MnO(2) system. The additive effect of biotic (As-oxidizing bacteria) and abiotic (δ-MnO(2) mineral) oxidation processes in a system containing both oxidants suggests that mineral-only results may underestimate the oxidative capacity of natural systems with biotic and abiotic As(III) oxidation pathways.

摘要

砷(As)是一种具有氧化还原活性的类金属元素,其在土壤中的毒性和迁移性取决于其氧化态。砷酸盐[As(III)]可以被土壤中的矿物质和微生物氧化为砷酸盐[As(V)],但是这些非生物和生物过程之间的相互作用尚不清楚。在这项研究中,使用批处理实验确定了两种异养土壤细菌(根癌农杆菌和荧光假单胞菌)和一种非晶态锰(Mn)氧化物矿物(δ-MnO(2))对砷(III)氧化的时间依赖性。当细菌和δ-MnO(2)同时氧化 As(III)时,溶液中出现的砷(V)的表观速率大于单独的各个组分的批处理实验。混合细胞-δ-MnO(2)系统的相加效应对于短期(<1 h)和长期(24 h)共孵育都是一致的,这表明细胞对矿物表面的抑制对 As(III)氧化速率影响很小。细胞与矿物表面之间的表面相互作用通过吸附和 pH 诱导的解吸结果得到指示。在有细菌存在的情况下,矿物对砷的总吸附较低(16.1±0.8%砷吸附),而单独存在δ-MnO(2)时则较高(23.4±1%),并且从细胞-δ-MnO(2)系统中解吸的砷比单独从δ-MnO(2)中解吸的砷更容易。因此,尽管在混合细胞-δ-MnO(2)系统中砷(III)被氧化得最快,但细菌的存在抑制了砷的吸附并降低了吸附在δ-MnO(2)上的砷的稳定性。在含有两种氧化剂的系统中,生物(氧化砷的细菌)和非生物(δ-MnO(2)矿物)氧化过程的相加效应表明,仅矿物的结果可能低估了具有生物和非生物砷(III)氧化途径的自然系统的氧化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验