Suppr超能文献

追踪糖苷水解酶家族 5 中双底物特异性的决定因素。

Tracing determinants of dual substrate specificity in glycoside hydrolase family 5.

机构信息

Joint BioEnergy Institute, Emeryville, California 94608, USA.

出版信息

J Biol Chem. 2012 Jul 20;287(30):25335-43. doi: 10.1074/jbc.M112.362640. Epub 2012 May 29.

Abstract

Enzymes are traditionally viewed as having exquisite substrate specificity; however, recent evidence supports the notion that many enzymes have evolved activities against a range of substrates. The diversity of activities across glycoside hydrolase family 5 (GH5) suggests that this family of enzymes may contain numerous members with activities on multiple substrates. In this study, we combined structure- and sequence-based phylogenetic analysis with biochemical characterization to survey the prevalence of dual specificity for glucan- and mannan-based substrates in the GH5 family. Examination of amino acid profile differences between the subfamilies led to the identification and subsequent experimental confirmation of an active site motif indicative of dual specificity. The motif enabled us to successfully discover several new dually specific members of GH5, and this pattern is present in over 70 other enzymes, strongly suggesting that dual endoglucanase-mannanase activity is widespread in this family. In addition, reinstatement of the conserved motif in a wild type member of GH5 enhanced its catalytic efficiency on glucan and mannan substrates by 175 and 1,600%, respectively. Phylogenetic examination of other GH families further indicates that the prevalence of enzyme multispecificity in GHs may be greater than has been experimentally characterized. Single domain multispecific GHs may be exploited for developing improved enzyme cocktails or facile engineering of microbial hosts for consolidated bioprocessing of lignocellulose.

摘要

酶通常被认为具有精细的底物特异性;然而,最近的证据支持这样一种观点,即许多酶已经进化出针对一系列底物的活性。糖苷水解酶家族 5 (GH5) 的活性多样性表明,这个酶家族可能包含许多具有多种底物活性的成员。在这项研究中,我们结合结构和基于序列的系统发育分析与生化特性分析,调查 GH5 家族中对葡聚糖和甘露聚糖基底物具有双重特异性的普遍性。对亚家族之间氨基酸特征差异的研究导致了一个活性位点基序的鉴定和随后的实验验证,该基序表明具有双重特异性。该基序使我们能够成功地发现 GH5 的几个新的双特异性成员,这种模式存在于其他 70 多个酶中,强烈表明这种双内切葡聚糖酶-甘露聚糖酶活性在这个家族中非常普遍。此外,在 GH5 的野生型成员中恢复保守基序,分别使该酶对葡聚糖和甘露聚糖底物的催化效率提高了 175%和 1600%。对其他 GH 家族的系统发育分析进一步表明,GH 中酶的多特异性的普遍性可能比实验表征的更为普遍。单结构域多特异性 GH 可用于开发改良的酶混合物,或方便地对微生物宿主进行工程改造,以实现木质纤维素的综合生物加工。

相似文献

1
Tracing determinants of dual substrate specificity in glycoside hydrolase family 5.
J Biol Chem. 2012 Jul 20;287(30):25335-43. doi: 10.1074/jbc.M112.362640. Epub 2012 May 29.
3
A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5.
Biochim Biophys Acta Gen Subj. 2018 Mar;1862(3):513-521. doi: 10.1016/j.bbagen.2017.11.004. Epub 2017 Nov 3.
4
Glycoside hydrolase subfamily GH5_57 features a highly redesigned catalytic interface to process complex hetero-β-mannans.
Acta Crystallogr D Struct Biol. 2022 Nov 1;78(Pt 11):1358-1372. doi: 10.1107/S2059798322009561. Epub 2022 Oct 20.
6
Extent and Origins of Functional Diversity in a Subfamily of Glycoside Hydrolases.
J Mol Biol. 2019 Mar 15;431(6):1217-1233. doi: 10.1016/j.jmb.2019.01.024. Epub 2019 Jan 25.
8
The Quaternary Structure of a Glycoside Hydrolase Dictates Specificity toward β-Glucans.
J Biol Chem. 2016 Mar 25;291(13):7183-94. doi: 10.1074/jbc.M115.695999. Epub 2016 Jan 11.
9
Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
Blood Cells Mol Dis. 1998 Jun;24(2):83-100. doi: 10.1006/bcmd.1998.9998.

引用本文的文献

1
Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil.
Biotechnol Lett. 2025 Mar 14;47(2):33. doi: 10.1007/s10529-025-03574-8.
2
Dynamics of loops surrounding the active site architecture in GH5_2 subfamily TfCel5A for cellulose degradation.
Biotechnol Biofuels Bioprod. 2023 Oct 18;16(1):154. doi: 10.1186/s13068-023-02411-2.
3
Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates.
mSystems. 2023 Aug 31;8(4):e0128322. doi: 10.1128/msystems.01283-22. Epub 2023 Jul 7.
4
Enzymatic degradation of plant biomass and synthetic polymers.
Nat Rev Chem. 2020 Mar;4(3):114-126. doi: 10.1038/s41570-020-0163-6. Epub 2020 Feb 21.
5
Insights into promiscuous chitosanases: the known and the unknown.
Appl Microbiol Biotechnol. 2022 Nov;106(21):6887-6898. doi: 10.1007/s00253-022-12198-1. Epub 2022 Sep 30.
6
Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):1979-1990. doi: 10.1007/s00253-022-11829-x. Epub 2022 Feb 17.
7
Multifunctional cellulases are potent, versatile tools for a renewable bioeconomy.
Curr Opin Biotechnol. 2021 Feb;67:141-148. doi: 10.1016/j.copbio.2020.12.020. Epub 2021 Feb 4.
9
Extent and Origins of Functional Diversity in a Subfamily of Glycoside Hydrolases.
J Mol Biol. 2019 Mar 15;431(6):1217-1233. doi: 10.1016/j.jmb.2019.01.024. Epub 2019 Jan 25.
10
The aldo-keto reductase: a multipurpose enzyme for biorefinery applications.
Biotechnol Biofuels. 2017 Jan 3;10:4. doi: 10.1186/s13068-016-0688-6. eCollection 2017.

本文引用的文献

1
Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose.
Biochim Biophys Acta. 2011 Dec;1814(12):1832-40. doi: 10.1016/j.bbapap.2011.07.020. Epub 2011 Aug 4.
2
Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile.
J Biotechnol. 2011 Jun 10;154(1):46-53. doi: 10.1016/j.jbiotec.2011.03.025. Epub 2011 Apr 8.
3
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W475-8. doi: 10.1093/nar/gkr201. Epub 2011 Apr 5.
4
Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon.
BMC Genomics. 2010 Oct 25;11:600. doi: 10.1186/1471-2164-11-600.
5
Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17651-6. doi: 10.1073/pnas.1008486107. Epub 2010 Sep 27.
6
Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima.
J Struct Biol. 2010 Dec;172(3):372-9. doi: 10.1016/j.jsb.2010.06.018. Epub 2010 Jul 3.
7
Enzyme promiscuity: a mechanistic and evolutionary perspective.
Annu Rev Biochem. 2010;79:471-505. doi: 10.1146/annurev-biochem-030409-143718.
8
FastTree 2--approximately maximum-likelihood trees for large alignments.
PLoS One. 2010 Mar 10;5(3):e9490. doi: 10.1371/journal.pone.0009490.
9
Circular permutation of Bacillus circulans xylanase: a kinetic and structural study.
Biochemistry. 2010 Mar 23;49(11):2464-74. doi: 10.1021/bi100036f.
10
Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases.
Bioresour Technol. 2010 Apr;101(7):2405-11. doi: 10.1016/j.biortech.2009.11.057. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验