Suppr超能文献

模板可用于模拟几乎所有具有结构特征的蛋白质复合物。

Templates are available to model nearly all complexes of structurally characterized proteins.

机构信息

Center for Bioinformatics and Department of Molecular Biosciences, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9438-41. doi: 10.1073/pnas.1200678109. Epub 2012 May 29.

Abstract

Traditional approaches to protein-protein docking sample the binding modes with no regard to similar experimentally determined structures (templates) of protein-protein complexes. Emerging template-based docking approaches utilize such similar complexes to determine the docking predictions. The docking problem assumes the knowledge of the participating proteins' structures. Thus, it provides the possibility of aligning the structures of the proteins and the template complexes. The progress in the development of template-based docking and the vast experience in template-based modeling of individual proteins show that, generally, such approaches are more reliable than the free modeling. The key aspect of this modeling paradigm is the availability of the templates. The current common perception is that due to the difficulties in experimental structure determination of protein-protein complexes, the pool of docking templates is insignificant, and thus a broad application of template-based docking is possible only at some future time. The results of our large scale, systematic study show that, surprisingly, in spite of the limited number of protein-protein complexes in the Protein Data Bank, docking templates can be found for complexes representing almost all the known protein-protein interactions, provided the components themselves have a known structure or can be homology-built. About one-third of the templates are of good quality when they are compared to experimental structures in test sets extracted from the Protein Data Bank and would be useful starting points in modeling the complexes. This finding dramatically expands our ability to model protein interactions, and has far-reaching implications for the protein docking field in general.

摘要

传统的蛋白质-蛋白质对接方法在进行对接预测时,不考虑蛋白质-蛋白质复合物的类似实验确定结构(模板)。新兴的基于模板的对接方法利用这些相似的复合物来确定对接预测。对接问题假设了参与蛋白质结构的知识。因此,它提供了对齐蛋白质和模板复合物结构的可能性。基于模板的对接的发展以及个体蛋白质基于模板建模的丰富经验表明,一般来说,这些方法比自由建模更可靠。这种建模范例的关键方面是模板的可用性。目前的普遍看法是,由于蛋白质-蛋白质复合物的实验结构确定存在困难,对接模板的数量微不足道,因此基于模板的对接的广泛应用只能在未来某个时候实现。我们的大规模、系统研究的结果表明,令人惊讶的是,尽管蛋白质数据库中蛋白质-蛋白质复合物的数量有限,但只要复合物的组成部分本身具有已知的结构,或者可以进行同源建模,就可以为几乎所有已知的蛋白质-蛋白质相互作用找到对接模板。在与从蛋白质数据库中提取的测试集中的实验结构进行比较时,大约三分之一的模板具有良好的质量,并且将成为建模复合物的有用起点。这一发现极大地扩展了我们建模蛋白质相互作用的能力,对蛋白质对接领域具有深远的影响。

相似文献

5
Structural quality of unrefined models in protein docking.蛋白质对接中未优化模型的结构质量
Proteins. 2017 Jan;85(1):39-45. doi: 10.1002/prot.25188. Epub 2016 Nov 13.
6
Protein docking using case-based reasoning.基于案例推理的蛋白质对接
Proteins. 2013 Dec;81(12):2150-8. doi: 10.1002/prot.24433.
8
Low-resolution structural modeling of protein interactome.蛋白质相互作用组的低分辨率结构建模。
Curr Opin Struct Biol. 2013 Apr;23(2):198-205. doi: 10.1016/j.sbi.2012.12.003. Epub 2013 Jan 5.
10
Structural templates for comparative protein docking.用于比较蛋白质对接的结构模板。
Proteins. 2015 Sep;83(9):1563-70. doi: 10.1002/prot.24736. Epub 2015 Jun 13.

引用本文的文献

10
Protein-protein interaction prediction with deep learning: A comprehensive review.基于深度学习的蛋白质-蛋白质相互作用预测:综述
Comput Struct Biotechnol J. 2022 Sep 19;20:5316-5341. doi: 10.1016/j.csbj.2022.08.070. eCollection 2022.

本文引用的文献

4
Protein interface conservation across structure space.蛋白质界面在结构空间中的保守性。
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10896-901. doi: 10.1073/pnas.1005894107. Epub 2010 Jun 1.
6
Nature of the protein universe.蛋白质世界的本质。
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11079-84. doi: 10.1073/pnas.0905029106. Epub 2009 Jun 18.
7
Protein-protein interaction and quaternary structure.蛋白质-蛋白质相互作用与四级结构。
Q Rev Biophys. 2008 May;41(2):133-80. doi: 10.1017/S0033583508004708.
10
Assembly reflects evolution of protein complexes.组装反映了蛋白质复合物的进化。
Nature. 2008 Jun 26;453(7199):1262-5. doi: 10.1038/nature06942. Epub 2008 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验