Suppr超能文献

基于强度聚类的组稀疏重建。

Group sparse reconstruction using intensity-based clustering.

机构信息

Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile.

出版信息

Magn Reson Med. 2013 Apr;69(4):1169-79. doi: 10.1002/mrm.24333. Epub 2012 May 30.

Abstract

Compressed sensing has been of great interest to speed up the acquisition of MR images. The k-t group sparse (k-t GS) method has recently been introduced for dynamic MR images to exploit not just the sparsity, as in compressed sensing, but also the spatial group structure in the sparse representation. k-t GS achieves higher acceleration factors compared to the conventional compressed sensing method. However, it assumes a spatial structure in the sparse representation and it requires a time consuming hard-thresholding reconstruction scheme. In this work, we propose to modify k-t GS by incorporating prior information about the sorted intensity of the signal in the sparse representation, for a more general and robust group assignment. This approach is referred to as group sparse reconstruction using intensity-based clustering. The feasibility of the proposed method is demonstrated for static 3D hyperpolarized lung images and applications with both dynamic and intensity changes, such as 2D cine and perfusion cardiac MRI, with retrospective undersampling. For all reported acceleration factors the proposed method outperforms the original compressed sensing method. Improved reconstruction over k-t GS method is demonstrated when k-t GS assumptions are not satisfied. The proposed method was also applied to cardiac cine images with a prospective sevenfold acceleration, outperforming the standard compressed sensing reconstruction.

摘要

压缩感知在加速磁共振成像采集方面引起了广泛关注。最近,针对动态磁共振图像,引入了 k-t 组稀疏(k-t GS)方法,不仅利用了压缩感知中的稀疏性,还利用了稀疏表示中的空间组结构。与传统的压缩感知方法相比,k-t GS 实现了更高的加速因子。然而,它假设稀疏表示中的空间结构,并且需要耗时的硬阈值重建方案。在这项工作中,我们建议通过在稀疏表示中纳入关于信号排序强度的先验信息来修改 k-t GS,以实现更通用和稳健的分组分配。这种方法被称为基于强度的聚类的分组稀疏重建。针对静态 3D 极化肺部图像以及具有动态和强度变化的应用(如二维电影和灌注心脏 MRI,采用回顾性欠采样),证明了所提出方法的可行性。在所报告的所有加速因子下,所提出的方法均优于原始的压缩感知方法。当不满足 k-t GS 假设时,证明了该方法在 k-t GS 方法上的重建效果有所改善。该方法还应用于具有前瞻性七倍加速的心脏电影图像,优于标准的压缩感知重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验