Suppr超能文献

基于低秩稀疏模型的并行成像技术在心血管磁共振中的应用

High-resolution cardiovascular MRI by integrating parallel imaging with low-rank and sparse modeling.

出版信息

IEEE Trans Biomed Eng. 2013 Nov;60(11):3083-92. doi: 10.1109/TBME.2013.2266096. Epub 2013 Jun 4.

Abstract

Magnetic resonance imaging (MRI) has long been recognized as a powerful tool for cardiovascular imaging because of its unique potential to measure blood flow, cardiac wall motion, and tissue properties jointly. However, many clinical applications of cardiac MRI have been limited by low imaging speed. In this paper, we present a novel method to accelerate cardiovascular MRI through the integration of parallel imaging, low-rank modeling, and sparse modeling. This method consists of a novel image model and specialized data acquisition. Of particular novelty is the proposed low-rank model component, which is specially adapted to the particular low-rank structure of cardiovascular signals. Simulations and in vivo experiments were performed to evaluate the method, as well as an analysis of the low-rank structure of a numerical cardiovascular phantom. Cardiac imaging experiments were carried out on both human and rat subjects without the use of ECG or respiratory gating and without breath holds. The proposed method reconstructed 2-D human cardiac images up to 22 fps and 1.0 mm × 1.0 mm spatial resolution and 3-D rat cardiac images at 67 fps and 0.65 mm × 0.65 mm × 0.31 mm spatial resolution. These capabilities will enhance the practical utility of cardiovascular MRI.

摘要

磁共振成像(MRI)长期以来一直被认为是心血管成像的有力工具,因为它具有联合测量血流、心脏壁运动和组织特性的独特潜力。然而,许多心脏 MRI 的临床应用受到成像速度低的限制。在本文中,我们提出了一种通过并行成像、低秩建模和稀疏建模相结合来加速心血管 MRI 的新方法。该方法包括一个新的图像模型和专门的数据采集。特别新颖的是所提出的低秩模型组件,它专门适应于心血管信号的特殊低秩结构。对该方法进行了模拟和体内实验评估,以及对数值心血管体模的低秩结构进行了分析。在没有使用心电图或呼吸门控且无需屏气的情况下,对人体和大鼠进行了心脏成像实验。该方法能够重建 2-D 人体心脏图像,帧率高达 22 fps,空间分辨率为 1.0mm×1.0mm,以及 3-D 大鼠心脏图像,帧率为 67 fps,空间分辨率为 0.65mm×0.65mm×0.31mm。这些能力将增强心血管 MRI 的实际应用。

相似文献

2
Four-dimensional MR cardiovascular imaging: method and applications.四维磁共振心血管成像:方法与应用
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3732-5. doi: 10.1109/IEMBS.2011.6090635.
5
High-resolution dynamic P-MRSI using a low-rank tensor model.基于低秩张量模型的高分辨率动态 P-MRSI 技术
Magn Reson Med. 2017 Aug;78(2):419-428. doi: 10.1002/mrm.26762. Epub 2017 May 28.

引用本文的文献

6
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.

本文引用的文献

3
Group sparse reconstruction using intensity-based clustering.基于强度聚类的组稀疏重建。
Magn Reson Med. 2013 Apr;69(4):1169-79. doi: 10.1002/mrm.24333. Epub 2012 May 30.
5
k-t Group sparse: a method for accelerating dynamic MRI.k-t 稀疏组:一种加速动态 MRI 的方法。
Magn Reson Med. 2011 Oct;66(4):1163-76. doi: 10.1002/mrm.22883. Epub 2011 Mar 9.
6
Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.利用稀疏性和低秩结构的加速动态 MRI:k-t SLR。
IEEE Trans Med Imaging. 2011 May;30(5):1042-54. doi: 10.1109/TMI.2010.2100850. Epub 2011 Jan 31.
10
Cardiac positron emission tomography.心脏正电子发射断层扫描
J Am Coll Cardiol. 2009 Jun 30;54(1):1-15. doi: 10.1016/j.jacc.2009.02.065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验