Suppr超能文献

k-t ISD:基于迭代支撑检测的压缩感知动态心脏磁共振成像。

k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.

机构信息

Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.

出版信息

Magn Reson Med. 2012 Jul;68(1):41-53. doi: 10.1002/mrm.23197. Epub 2011 Nov 23.

Abstract

Compressed sensing (CS) has been used in dynamic cardiac MRI to reduce the data acquisition time. The sparseness of the dynamic image series in the spatial- and temporal-frequency (x-f) domain has been exploited in existing works. In this article, we propose a new k-t iterative support detection (k-t ISD) method to improve the CS reconstruction for dynamic cardiac MRI by incorporating additional information on the support of the dynamic image in x-f space based on the theory of CS with partially known support. The proposed method uses an iterative procedure for alternating between image reconstruction and support detection in x-f space. At each iteration, a truncated ℓ(1) minimization is applied to obtain the reconstructed image in x-f space using the support information from the previous iteration. Subsequently, by thresholding the reconstruction, we update the support information to be used in the next iteration. Experimental results demonstrate that the proposed k-t ISD method improves the reconstruction quality of dynamic cardiac MRI over the basic CS method in which support information is not exploited.

摘要

压缩感知(CS)已被用于动态心脏 MRI 中,以减少数据采集时间。现有工作利用了动态图像系列在时空(x-f)域中的稀疏性。在本文中,我们提出了一种新的 k-t 迭代支撑检测(k-t ISD)方法,通过在 CS 理论的基础上,利用关于 x-f 空间中动态图像支撑的附加信息,来提高动态心脏 MRI 的 CS 重建。该方法使用一种迭代过程,在 x-f 空间中交替进行图像重建和支撑检测。在每次迭代中,使用来自前一次迭代的支撑信息,通过截断的 l(1)最小化来获得 x-f 空间中的重建图像。随后,通过对重建进行阈值处理,我们更新下一次迭代中使用的支撑信息。实验结果表明,与不利用支撑信息的基本 CS 方法相比,所提出的 k-t ISD 方法提高了动态心脏 MRI 的重建质量。

相似文献

6
Group sparse reconstruction using intensity-based clustering.基于强度聚类的组稀疏重建。
Magn Reson Med. 2013 Apr;69(4):1169-79. doi: 10.1002/mrm.24333. Epub 2012 May 30.

引用本文的文献

4
Bi-Linear Modeling of Manifold-Data Geometry for Dynamic-MRI Recovery.用于动态磁共振成像恢复的流形数据几何双线性建模
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313115. Epub 2018 Mar 12.
5
ACCELERATING DYNAMIC MAGNETIC RESONANCE IMAGING BY NONLINEAR SPARSE CODING.通过非线性稀疏编码加速动态磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:510-513. doi: 10.1109/ISBI.2016.7493319. Epub 2016 Jun 16.

本文引用的文献

1
Compressed-sensing dynamic MR imaging with partially known support.具有部分已知支撑的压缩感知动态磁共振成像
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2829-32. doi: 10.1109/IEMBS.2010.5626077.
3
Real-time cardiac MRI using prior spatial-spectral information.利用先验空间光谱信息的实时心脏磁共振成像
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4383-6. doi: 10.1109/IEMBS.2009.5333482.
4
Accelerating SENSE using compressed sensing.利用压缩感知加速 SENSE。
Magn Reson Med. 2009 Dec;62(6):1574-84. doi: 10.1002/mrm.22161.
5
A practical acceleration algorithm for real-time imaging.一种实用的实时成像加速算法。
IEEE Trans Med Imaging. 2009 Dec;28(12):2042-51. doi: 10.1109/TMI.2009.2030474. Epub 2009 Aug 25.
6
7
Improved time series reconstruction for dynamic magnetic resonance imaging.用于动态磁共振成像的改进时间序列重建
IEEE Trans Med Imaging. 2009 Jul;28(7):1093-104. doi: 10.1109/TMI.2008.2012030. Epub 2009 Jan 13.
9
Compressed sensing in dynamic MRI.动态磁共振成像中的压缩感知
Magn Reson Med. 2008 Feb;59(2):365-73. doi: 10.1002/mrm.21477.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验