Suppr超能文献

通过纤维素分解菌与产氢甲烷菌的共培养加速纤维素降解和产物转化。

Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen.

机构信息

Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba-ken 270-1194, Japan.

出版信息

J Biosci Bioeng. 2012 Oct;114(4):435-9. doi: 10.1016/j.jbiosc.2012.05.002. Epub 2012 May 30.

Abstract

Although the effects of syntrophic relationships between bacteria and methanogens have been reported in some environments, those on cellulose decomposition using cellulolytic bacteria from methanogenic reactors have not yet been examined. The effects of syntrophic co-culture on the decomposition of a cellulosic material were investigated in a co-culture of Clostridium clariflavum strain CL-1 and the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH and a single-culture of strain CL-1 under thermophilic conditions. In this study, strain CL-1 was newly isolated as a cellulolytic bacterium from a thermophilic methanogenic reactor used for degrading garbage slurry. The degradation efficiency and cell density of strain CL-1 were 2.9- and 2.7-fold higher in the co-culture than in the single-culture after 60 h of incubation, respectively. Acetate, lactate and ethanol were the primary products in both cultures, and the concentration of propionate was low. The content of acetate to total organic acids plus ethanol was 59.3% in the co-culture. However, the ratio decreased to 24.9% in the single-culture, although acetate was the primary product. Therefore, hydrogen scavenging by the hydrogenotrophic methanogen strain ΔH could shift the metabolic pathway to the acetate production pathway in the co-culture. Increases in the cell density and the consequent acceleration of cellulose degradation in the co-culture would be caused by increases in adenosine 5'-triphosphate (ATP) levels, as the acetate production pathway includes ATP generation. Syntrophic cellulose decomposition by the cellulolytic bacteria and hydrogenotrophic methanogens would be the dominant reaction in the thermophilic methanogenic reactor degrading cellulosic materials.

摘要

虽然在某些环境中已经报道了细菌和产甲烷菌之间的共营养关系的影响,但尚未研究产甲烷菌反应器中纤维素分解菌的共培养对纤维素分解的影响。在嗜热条件下,将产氢甲烷菌 Methanothermobacter thermautotrophicus 菌株 ΔH 与 Clostridium clariflavum 菌株 CL-1 的共培养物和菌株 CL-1 的单培养物进行了共培养,研究了共培养物对纤维素物质分解的影响。在这项研究中,菌株 CL-1 是从用于降解垃圾浆的嗜热产甲烷反应器中分离出来的新的纤维素分解菌。在 60 小时的孵育后,共培养物中菌株 CL-1 的降解效率和细胞密度分别比单培养物高 2.9 倍和 2.7 倍。在两种培养物中,主要产物为乙酸盐、乳酸盐和乙醇,丙酸盐浓度较低。共培养物中乙酸盐与总有机酸加乙醇的含量为 59.3%。然而,在单培养物中,尽管乙酸盐是主要产物,但该比例下降到 24.9%。因此,产氢甲烷菌菌株 ΔH 的氢清除作用可能会使共培养物中的代谢途径转向乙酸盐的产生途径。在共培养物中,细胞密度的增加以及随之而来的纤维素降解的加速将归因于腺苷 5'-三磷酸 (ATP) 水平的增加,因为乙酸盐的产生途径包括 ATP 的产生。嗜热产甲烷菌降解纤维素物质的反应器中,纤维素的共营养分解可能是由产纤维素菌和产氢甲烷菌共同作用的主要反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验