Sichert Andreas, Cordero Otto X
Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
Front Microbiol. 2021 Oct 8;12:705082. doi: 10.3389/fmicb.2021.705082. eCollection 2021.
Microbes have the unique ability to break down the complex polysaccharides that make up the bulk of organic matter, initiating a cascade of events that leads to their recycling. Traditionally, the rate of organic matter degradation is perceived to be limited by the chemical and physical structure of polymers. Recent advances in microbial ecology, however, suggest that polysaccharide persistence can result from non-linear growth dynamics created by the coexistence of alternate degradation strategies, metabolic roles as well as by ecological interactions between microbes. This complex "landscape" of degradation strategies and interspecific interactions present in natural microbial communities appears to be far from evolutionarily stable, as frequent gene gain and loss reshape enzymatic repertoires and metabolic roles. In this perspective, we discuss six challenges at the heart of this problem, ranging from the evolution of genetic repertoires, phenotypic heterogeneity in clonal populations, the development of a trait-based ecology, and the impact of metabolic interactions and microbial cooperation on degradation rates. We aim to reframe some of the key questions in the study of polysaccharide-bacteria interactions in the context of eco-evolutionary dynamics, highlighting possible research directions that, if pursued, would advance our understanding of polysaccharide degraders at the interface between biochemistry, ecology and evolution.
微生物具有独特的能力,能够分解构成大部分有机物的复杂多糖,引发一系列导致其循环利用的事件。传统上,有机物降解速率被认为受聚合物化学和物理结构的限制。然而,微生物生态学的最新进展表明,多糖的持久性可能源于交替降解策略、代谢作用的共存以及微生物之间的生态相互作用所产生的非线性生长动态。自然微生物群落中存在的这种复杂的降解策略和种间相互作用“景观”似乎远非进化上稳定的,因为频繁的基因获得和丢失重塑了酶谱和代谢作用。从这个角度出发,我们讨论了这个问题核心的六个挑战,范围涵盖基因库的进化、克隆群体中的表型异质性、基于性状的生态学发展以及代谢相互作用和微生物合作对降解速率的影响。我们旨在在生态进化动力学的背景下重新构建多糖 - 细菌相互作用研究中的一些关键问题,突出可能的研究方向,如果加以探索,将推进我们在生物化学、生态学和进化界面上对多糖降解者的理解。