Mathematics and Statistics Department, University of South Alabama, Mobile, Alabama, United States of America.
PLoS One. 2012;7(5):e37537. doi: 10.1371/journal.pone.0037537. Epub 2012 May 24.
MicroRNA is a set of small RNA molecules mediating gene expression at post-transcriptional/translational levels. Most of well-established high throughput discovery platforms, such as microarray, real time quantitative PCR, and sequencing, have been adapted to study microRNA in various human diseases. The total number of microRNAs in humans is approximately 1,800, which challenges some analytical methodologies requiring a large number of entries. Unlike messenger RNA, the majority of microRNA (>60%) maintains relatively low abundance in the cells. When analyzed using microarray, the signals of these low-expressed microRNAs are influenced by other non-specific signals including the background noise. It is crucial to distinguish the true microRNA signals from measurement errors in microRNA array data analysis. In this study, we propose a novel measurement error model-based normalization method and differentially-expressed microRNA detection method for microRNA profiling data acquired from locked nucleic acids (LNA) microRNA array. Compared with some existing methods, the proposed method significantly improves the detection among low-expressed microRNAs when assessed by quantitative real-time PCR assay.
microRNA 是一组小 RNA 分子,在转录后/翻译水平上调节基因表达。大多数成熟的高通量发现平台,如微阵列、实时定量 PCR 和测序,已经被用于研究各种人类疾病中的 microRNA。人类中 microRNA 的总数约为 1800,这给需要大量条目数的一些分析方法带来了挑战。与信使 RNA 不同,大多数 microRNA(>60%)在细胞中保持相对较低的丰度。当使用微阵列进行分析时,这些低表达 microRNA 的信号会受到其他非特异性信号(包括背景噪声)的影响。在 microRNA 阵列数据分析中,区分真实的 microRNA 信号和测量误差至关重要。在这项研究中,我们提出了一种基于新的测量误差模型的归一化方法和差异表达 microRNA 检测方法,用于从锁核酸(LNA)microRNA 阵列获得的 microRNA 图谱数据。与一些现有方法相比,该方法在通过定量实时 PCR 检测评估时,显著提高了低表达 microRNA 的检测能力。