Suppr超能文献

通过深度测序对微小RNA进行表达谱分析。

Expression profiling of microRNAs by deep sequencing.

作者信息

Creighton Chad J, Reid Jeffrey G, Gunaratne Preethi H

机构信息

Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Brief Bioinform. 2009 Sep;10(5):490-7. doi: 10.1093/bib/bbp019. Epub 2009 Mar 30.

Abstract

MicroRNAs are short non-coding RNAs that regulate the stability and translation of mRNAs. Profiling experiments, using microarray or deep sequencing technology, have identified microRNAs that are preferentially expressed in certain tissues, specific stages of development, or disease states such as cancer. Deep sequencing utilizes massively parallel sequencing, generating millions of small RNA sequence reads from a given sample. Profiling of microRNAs by deep sequencing measures absolute abundance and allows for the discovery of novel microRNAs that have eluded previous cloning and standard sequencing efforts. Public databases provide in silico predictions of microRNA gene targets by various algorithms. To better determine which of these predictions represent true positives, microRNA expression data can be integrated with gene expression data to identify putative microRNA:mRNA functional pairs. Here we discuss tools and methodologies for the analysis of microRNA expression data from deep sequencing.

摘要

微小RNA是一类短的非编码RNA,可调控信使核糖核酸(mRNA)的稳定性和翻译过程。使用微阵列或深度测序技术的分析实验已鉴定出在某些组织、特定发育阶段或疾病状态(如癌症)中优先表达的微小RNA。深度测序利用大规模平行测序技术,从给定样本中生成数百万个小RNA序列读数。通过深度测序对微小RNA进行分析可测量其绝对丰度,并能发现以往克隆和标准测序工作未能发现的新型微小RNA。公共数据库通过各种算法提供微小RNA基因靶标的计算机预测结果。为了更好地确定这些预测中哪些代表真正的阳性结果,可以将微小RNA表达数据与基因表达数据整合,以识别假定的微小RNA:mRNA功能对。在此,我们讨论用于分析来自深度测序的微小RNA表达数据的工具和方法。

相似文献

1
Expression profiling of microRNAs by deep sequencing.通过深度测序对微小RNA进行表达谱分析。
Brief Bioinform. 2009 Sep;10(5):490-7. doi: 10.1093/bib/bbp019. Epub 2009 Mar 30.
5
MicroRNA Sequencing Data Analysis Toolkits.微小RNA测序数据分析工具包
Methods Mol Biol. 2018;1699:211-215. doi: 10.1007/978-1-4939-7435-1_16.

引用本文的文献

5
Data mining and mathematical models in cancer prognosis and prediction.癌症预后与预测中的数据挖掘和数学模型
Med Rev (2021). 2022 Jun 29;2(3):285-307. doi: 10.1515/mr-2021-0026. eCollection 2022 Jun.

本文引用的文献

2
Next-generation DNA sequencing.下一代DNA测序
Nat Biotechnol. 2008 Oct;26(10):1135-45. doi: 10.1038/nbt1486.
3
How to get genomes at one ten-thousandth the cost.如何以万分之一的成本获取基因组。
Nat Biotechnol. 2008 Oct;26(10):1113-5. doi: 10.1038/nbt1008-1113.
5
A toolkit for analysing large-scale plant small RNA datasets.一个用于分析大规模植物小RNA数据集的工具包。
Bioinformatics. 2008 Oct 1;24(19):2252-3. doi: 10.1093/bioinformatics/btn428. Epub 2008 Aug 19.
7
Widespread changes in protein synthesis induced by microRNAs.微小RNA诱导的蛋白质合成的广泛变化。
Nature. 2008 Sep 4;455(7209):58-63. doi: 10.1038/nature07228. Epub 2008 Jul 30.
8
The impact of microRNAs on protein output.微小RNA对蛋白质产出的影响。
Nature. 2008 Sep 4;455(7209):64-71. doi: 10.1038/nature07242. Epub 2008 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验