Institute for Stochastics, Johannes Kepler University, Linz, Austria.
J Math Neurosci. 2013 Jan 23;3(1):1. doi: 10.1186/2190-8567-3-1.
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson-Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model.Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20.
在这项研究中,我们考虑了神经场微观随机模型的极限定理。我们证明了当空间中分布的神经元群体数量和每个群体中的神经元数量趋于无穷大时,Wilson-Cowan 方程可以作为微观模型序列在概率紧集上的一致收敛的极限来获得。该结果还允许获得定性不同的随机收敛概念的极限,例如,均值收敛。此外,我们还提出了微观模型中鞅部分的中心极限定理,该定理经过适当缩放后,收敛于具有独立增量的中心高斯过程。这两个结果为提出神经场朗之万方程提供了基础,该随机微分方程在希尔伯特空间中取值,是本研究中化学朗之万方程的无限维模拟。在技术层面上,我们将最近发展的大数定律和 Hilbert 空间中分段确定性过程的中心极限定理应用于随机神经元网络模型的主方程公式。这些定理适用于 Hilbert 空间中的过程,因此能够包含基础模型的空间结构。数学主题分类(2000 年):60F05、60J25、60J75、92C20。