Suppr超能文献

大数定律和随机神经场方程的朗之万近似。

Laws of large numbers and langevin approximations for stochastic neural field equations.

机构信息

Institute for Stochastics, Johannes Kepler University, Linz, Austria.

出版信息

J Math Neurosci. 2013 Jan 23;3(1):1. doi: 10.1186/2190-8567-3-1.

Abstract

In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson-Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model.Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20.

摘要

在这项研究中,我们考虑了神经场微观随机模型的极限定理。我们证明了当空间中分布的神经元群体数量和每个群体中的神经元数量趋于无穷大时,Wilson-Cowan 方程可以作为微观模型序列在概率紧集上的一致收敛的极限来获得。该结果还允许获得定性不同的随机收敛概念的极限,例如,均值收敛。此外,我们还提出了微观模型中鞅部分的中心极限定理,该定理经过适当缩放后,收敛于具有独立增量的中心高斯过程。这两个结果为提出神经场朗之万方程提供了基础,该随机微分方程在希尔伯特空间中取值,是本研究中化学朗之万方程的无限维模拟。在技术层面上,我们将最近发展的大数定律和 Hilbert 空间中分段确定性过程的中心极限定理应用于随机神经元网络模型的主方程公式。这些定理适用于 Hilbert 空间中的过程,因此能够包含基础模型的空间结构。数学主题分类(2000 年):60F05、60J25、60J75、92C20。

相似文献

1
Laws of large numbers and langevin approximations for stochastic neural field equations.
J Math Neurosci. 2013 Jan 23;3(1):1. doi: 10.1186/2190-8567-3-1.
2
Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.
J Math Neurosci. 2011 May 3;1(1):2. doi: 10.1186/2190-8567-1-2.
3
Gaussian approximations for chemostat models in finite and infinite dimensions.
J Math Biol. 2017 Oct;75(4):805-843. doi: 10.1007/s00285-017-1097-6. Epub 2017 Jan 27.
4
Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051903. doi: 10.1103/PhysRevE.82.051903. Epub 2010 Nov 3.
6
Developing Itô stochastic differential equation models for neuronal signal transduction pathways.
Comput Biol Chem. 2006 Aug;30(4):280-91. doi: 10.1016/j.compbiolchem.2006.04.002.
7
Large deviations for nonlocal stochastic neural fields.
J Math Neurosci. 2014 Apr 17;4(1):1. doi: 10.1186/2190-8567-4-1.
8
Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces.
Comput Optim Appl. 2021;78(3):705-740. doi: 10.1007/s10589-020-00259-y. Epub 2021 Jan 12.
10
On the origins of approximations for stochastic chemical kinetics.
J Chem Phys. 2005 Oct 22;123(16):164115. doi: 10.1063/1.2062048.

引用本文的文献

1
Neural field models for latent state inference: Application to large-scale neuronal recordings.
PLoS Comput Biol. 2019 Nov 4;15(11):e1007442. doi: 10.1371/journal.pcbi.1007442. eCollection 2019 Nov.
2
A gradient flow formulation for the stochastic Amari neural field model.
J Math Biol. 2019 Sep;79(4):1227-1252. doi: 10.1007/s00285-019-01393-w. Epub 2019 Jun 18.
3
Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations.
J Math Neurosci. 2017 Dec;7(1):5. doi: 10.1186/s13408-017-0048-2. Epub 2017 Jul 6.

本文引用的文献

1
Finite-size and correlation-induced effects in mean-field dynamics.
J Comput Neurosci. 2011 Nov;31(3):453-84. doi: 10.1007/s10827-011-0320-5. Epub 2011 Mar 8.
2
Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051903. doi: 10.1103/PhysRevE.82.051903. Epub 2010 Nov 3.
3
Avalanches in a stochastic model of spiking neurons.
PLoS Comput Biol. 2010 Jul 8;6(7):e1000846. doi: 10.1371/journal.pcbi.1000846.
5
Systematic fluctuation expansion for neural network activity equations.
Neural Comput. 2010 Feb;22(2):377-426. doi: 10.1162/neco.2009.02-09-960.
6
Field-theoretic approach to fluctuation effects in neural networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051919. doi: 10.1103/PhysRevE.75.051919. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验