Suppr超能文献

具有随机突触权重和随机输入的多群体神经网络的建设性平均场分析。

A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs.

作者信息

Faugeras Olivier, Touboul Jonathan, Cessac Bruno

机构信息

NeuroMathComp Laboratory, INRIA/ENS France.

出版信息

Front Comput Neurosci. 2009 Feb 18;3:1. doi: 10.3389/neuro.10.001.2009. eCollection 2009.

Abstract

We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales.

摘要

我们处理神经元建模中两个尺度之间的差距弥合问题。在第一个(微观)尺度上,单个神经元被单独考虑,其行为由控制膜电位时间变化的随机微分方程描述。它们通过作用于其产生的活动的突触连接相互耦合,活动是膜电位的非线性函数。在第二个(介观)尺度上,相互作用的神经元群体由类似的方程单独描述。描述动态和静态平均场行为的方程被视为一组随机过程上的泛函方程。采用这种新观点使我们能够证明这些方程在任何有限时间区间上都是适定的,并提供一种有效计算其唯一解的构造性方法。该方法被证明收敛到唯一解,并且我们刻画了其复杂度和收敛速率。我们还给出了无限时间区间上静态问题的部分结果。这些结果为诸如Jansen和Rit(1995)的神经团模型等提供了新的见解:它们的动力学表现为我们分析中出现的更为丰富的动力学的粗略近似。我们的数值实验证实,我们提出的框架以及从中推导的数值方法为探索不同尺度下的神经行为提供了一个新的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验