Suppr超能文献

神经网络活动方程的系统涨落展开。

Systematic fluctuation expansion for neural network activity equations.

出版信息

Neural Comput. 2010 Feb;22(2):377-426. doi: 10.1162/neco.2009.02-09-960.

Abstract

Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.

摘要

群体速率或活动方程是神经网络建模的常用方法的基础。这些方程为给定连接的网络内神经元的发放率或活动提供了平均场动力学。这些方程的缺点是它们只考虑平均发放率,而忽略了发放之间的相关性等更高阶统计量。最近提出了一种包含所有阶统计量的神经网络随机理论。我们描述了如何通过引入相关方程和适当的耦合项,将该理论系统地扩展到群体速率方程。每个近似层次都产生封闭的方程;它们只依赖于感兴趣的平均值和特定相关性,而无需为此进行特定的准则。我们在一个全连接网络的例子中展示了我们的广义活动方程系统如何捕捉到仅由平均场速率方程错过的现象。

相似文献

2
Stochastic dynamics of a finite-size spiking neural network.有限规模脉冲神经网络的随机动力学
Neural Comput. 2007 Dec;19(12):3262-92. doi: 10.1162/neco.2007.19.12.3262.
6
Field-theoretic approach to fluctuation effects in neural networks.神经网络中波动效应的场论方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051919. doi: 10.1103/PhysRevE.75.051919. Epub 2007 May 29.
8
The Complexity of Dynamics in Small Neural Circuits.小型神经回路中动力学的复杂性
PLoS Comput Biol. 2016 Aug 5;12(8):e1004992. doi: 10.1371/journal.pcbi.1004992. eCollection 2016 Aug.

引用本文的文献

1
The myth of the Bayesian brain.贝叶斯大脑的神话。
Eur J Appl Physiol. 2025 Jun 26. doi: 10.1007/s00421-025-05855-6.
5
Geometry of population activity in spiking networks with low-rank structure.具有低秩结构的尖峰网络中群体活动的几何结构。
PLoS Comput Biol. 2023 Aug 7;19(8):e1011315. doi: 10.1371/journal.pcbi.1011315. eCollection 2023 Aug.
6
Targeting operational regimes of interest in recurrent neural networks.针对递归神经网络中的感兴趣的运行状态。
PLoS Comput Biol. 2023 May 15;19(5):e1011097. doi: 10.1371/journal.pcbi.1011097. eCollection 2023 May.
9
Critical behaviour of the stochastic Wilson-Cowan model.随机威尔逊-考恩模型的临界行为。
PLoS Comput Biol. 2021 Aug 30;17(8):e1008884. doi: 10.1371/journal.pcbi.1008884. eCollection 2021 Aug.

本文引用的文献

2
Stochastic dynamics of a finite-size spiking neural network.有限规模脉冲神经网络的随机动力学
Neural Comput. 2007 Dec;19(12):3262-92. doi: 10.1162/neco.2007.19.12.3262.
3
Correlations, fluctuations, and stability of a finite-size network of coupled oscillators.耦合振子有限尺寸网络的相关性、涨落与稳定性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031118. doi: 10.1103/PhysRevE.76.031118. Epub 2007 Sep 13.
4
Field-theoretic approach to fluctuation effects in neural networks.神经网络中波动效应的场论方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051919. doi: 10.1103/PhysRevE.75.051919. Epub 2007 May 29.
6
Olfactory bulb gamma oscillations are enhanced with task demands.嗅球γ振荡会随着任务需求而增强。
J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007.
8
Kinetic theory of coupled oscillators.耦合振子的动力学理论。
Phys Rev Lett. 2007 Feb 2;98(5):054101. doi: 10.1103/PhysRevLett.98.054101. Epub 2007 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验