Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
Curr Opin Struct Biol. 2012 Jun;22(3):304-12. doi: 10.1016/j.sbi.2012.04.007. Epub 2012 May 31.
Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.
在过去的二十年中,对单个拉伸和扭曲 DNA 分子的测量帮助定义了双螺旋的基本弹性特性,并实现了 DNA 相关分子机器的实时功能测定。最近,用于同时测量自由波动的扭转和延伸的新磁镊方法开始揭示大核蛋白复合物的结构动力学。相关技术进步促进了 DNA 扭矩的直接测量,有助于更好地理解机械应力下 DNA 的突然结构转变。这些新的测量结果还被用于研究中,这些研究表明单分子操作和结构 DNA 纳米技术之间正在发展协同关系。