Zhu Hongxiao, Brown Philip J, Morris Jeffrey S
Department of Statistical Science, Duke University, Durham, NC 27708, USA.
Biometrics. 2012 Dec;68(4):1260-8. doi: 10.1111/j.1541-0420.2012.01765.x. Epub 2012 Jun 6.
This article introduces new methods for performing classification of complex, high-dimensional functional data using the functional mixed model (FMM) framework. The FMM relates a functional response to a set of predictors through functional fixed and random effects, which allows it to account for various factors and between-function correlations. The methods include training and prediction steps. In the training steps we train the FMM model by treating class designation as one of the fixed effects, and in the prediction steps we classify the new objects using posterior predictive probabilities of class. Through a Bayesian scheme, we are able to adjust for factors affecting both the functions and the class designations. While the methods can be used in any FMM framework, we provide details for two specific Bayesian approaches: the Gaussian, wavelet-based FMM (G-WFMM) and the robust, wavelet-based FMM (R-WFMM). Both methods perform modeling in the wavelet space, which yields parsimonious representations for the functions, and can naturally adapt to local features and complex nonstationarities in the functions. The R-WFMM allows potentially heavier tails for features of the functions indexed by particular wavelet coefficients, leading to a down-weighting of outliers that makes the method robust to outlying functions or regions of functions. The models are applied to a pancreatic cancer mass spectroscopy data set and compared with other recently developed functional classification methods.
本文介绍了使用功能混合模型(FMM)框架对复杂的高维功能数据进行分类的新方法。FMM通过功能固定效应和随机效应将功能响应与一组预测变量相关联,这使其能够考虑各种因素以及功能间的相关性。这些方法包括训练和预测步骤。在训练步骤中,我们将类别指定视为固定效应之一来训练FMM模型,而在预测步骤中,我们使用类别的后验预测概率对新对象进行分类。通过贝叶斯方案,我们能够对影响功能和类别指定的因素进行调整。虽然这些方法可用于任何FMM框架,但我们提供了两种特定贝叶斯方法的详细信息:基于小波的高斯FMM(G-WFMM)和基于小波的稳健FMM(R-WFMM)。这两种方法都在小波空间中进行建模,这为功能提供了简洁的表示,并且能够自然地适应功能中的局部特征和复杂的非平稳性。R-WFMM允许由特定小波系数索引的功能特征具有可能更重的尾部,从而导致异常值的权重降低,使该方法对异常功能或功能区域具有鲁棒性。这些模型应用于胰腺癌质谱数据集,并与其他最近开发的功能分类方法进行了比较。