Suppr超能文献

使用基于小波的功能混合模型对质谱蛋白质组学数据进行贝叶斯分析。

Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models.

作者信息

Morris Jeffrey S, Brown Philip J, Herrick Richard C, Baggerly Keith A, Coombes Kevin R

机构信息

The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.

出版信息

Biometrics. 2008 Jun;64(2):479-89. doi: 10.1111/j.1541-0420.2007.00895.x. Epub 2007 Sep 20.

Abstract

In this article, we apply the recently developed Bayesian wavelet-based functional mixed model methodology to analyze MALDI-TOF mass spectrometry proteomic data. By modeling mass spectra as functions, this approach avoids reliance on peak detection methods. The flexibility of this framework in modeling nonparametric fixed and random effect functions enables it to model the effects of multiple factors simultaneously, allowing one to perform inference on multiple factors of interest using the same model fit, while adjusting for clinical or experimental covariates that may affect both the intensities and locations of peaks in the spectra. For example, this provides a straightforward way to account for systematic block and batch effects that characterize these data. From the model output, we identify spectral regions that are differentially expressed across experimental conditions, in a way that takes both statistical and clinical significance into account and controls the Bayesian false discovery rate to a prespecified level. We apply this method to two cancer studies.

摘要

在本文中,我们应用最近开发的基于贝叶斯小波的函数混合模型方法来分析基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)蛋白质组学数据。通过将质谱图建模为函数,这种方法避免了对峰检测方法的依赖。该框架在对非参数固定效应和随机效应函数进行建模时的灵活性,使其能够同时对多个因素的影响进行建模,从而允许使用相同的模型拟合对多个感兴趣的因素进行推断,同时调整可能影响光谱中峰强度和位置的临床或实验协变量。例如,这提供了一种直接的方法来考虑表征这些数据的系统区组和批次效应。从模型输出中,我们识别出在不同实验条件下差异表达的光谱区域,其方式兼顾了统计意义和临床意义,并将贝叶斯错误发现率控制在预先指定的水平。我们将此方法应用于两项癌症研究。

相似文献

1
Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models.
Biometrics. 2008 Jun;64(2):479-89. doi: 10.1111/j.1541-0420.2007.00895.x. Epub 2007 Sep 20.
2
Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra.
Bioinformatics. 2008 Jan 1;24(1):63-70. doi: 10.1093/bioinformatics/btm533. Epub 2007 Nov 14.
3
Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.
Bioinformatics. 2006 Sep 1;22(17):2059-65. doi: 10.1093/bioinformatics/btl355. Epub 2006 Jul 4.
4
Guilt-by-association feature selection: identifying biomarkers from proteomic profiles.
J Biomed Inform. 2008 Feb;41(1):124-36. doi: 10.1016/j.jbi.2007.04.003. Epub 2007 Apr 14.
5
Improved model-based, platform-independent feature extraction for mass spectrometry.
Bioinformatics. 2007 Oct 1;23(19):2528-35. doi: 10.1093/bioinformatics/btm385. Epub 2007 Aug 13.
6
Proteomic mass spectra classification using decision tree based ensemble methods.
Bioinformatics. 2005 Jul 15;21(14):3138-45. doi: 10.1093/bioinformatics/bti494. Epub 2005 May 12.
7
Algorithms for alignment of mass spectrometry proteomic data.
Bioinformatics. 2005 Jul 15;21(14):3066-73. doi: 10.1093/bioinformatics/bti482. Epub 2005 May 6.
8
A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
Bioinformatics. 2005 May 15;21(10):2210-24. doi: 10.1093/bioinformatics/bti383. Epub 2005 Mar 15.
9
Bayesian estimation for molecular profile reconstruction in proteomics based on liquid chromatography and mass spectrometry.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5980-3. doi: 10.1109/IEMBS.2007.4353710.
10
Rapid, semi-automated protein terminal characterization using ISDetect.
Nat Biotechnol. 2016 Aug 9;34(8):811-3. doi: 10.1038/nbt.3621.

引用本文的文献

1
A clustering approach to integrative analyses of multiomic cancer data.
J Appl Stat. 2024 Nov 29;52(8):1539-1560. doi: 10.1080/02664763.2024.2431742. eCollection 2025.
2
A probabilistic modeling framework for genomic networks incorporating sample heterogeneity.
Cell Rep Methods. 2025 Feb 24;5(2):100984. doi: 10.1016/j.crmeth.2025.100984. Epub 2025 Feb 14.
3
A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data.
J Appl Stat. 2024 Jun 16;52(2):287-305. doi: 10.1080/02664763.2024.2367148. eCollection 2025.
4
BAYESIAN LEARNING OF COVID-19 VACCINE SAFETY WHILE INCORPORATING ADVERSE EVENTS ONTOLOGY.
Ann Appl Stat. 2023 Dec;17(4):2887-2902. doi: 10.1214/23-aoas1743. Epub 2023 Oct 30.
6
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
7
FUNCTION-ON-SCALAR QUANTILE REGRESSION WITH APPLICATION TO MASS SPECTROMETRY PROTEOMICS DATA.
Ann Appl Stat. 2020 Jun;14(2):521-541. doi: 10.1214/19-aoas1319. Epub 2020 Jun 29.
8
Bayesian bi-level variable selection for genome-wide survival study.
Genomics Inform. 2023 Sep;21(3):e28. doi: 10.5808/gi.23047. Epub 2023 Jun 28.
9
Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.
J Comput Graph Stat. 2023;32(2):353-365. doi: 10.1080/10618600.2022.2107532. Epub 2022 Oct 4.
10
Bayesian Wavelet-packet Historical Functional Linear Models.
Stat Comput. 2021 Mar;31(2). doi: 10.1007/s11222-020-09981-3. Epub 2021 Jan 27.

本文引用的文献

1
Wavelet-based functional mixed models.
J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199. doi: 10.1111/j.1467-9868.2006.00539.x.
3
Correcting common errors in identifying cancer-specific serum peptide signatures.
J Proteome Res. 2005 Jul-Aug;4(4):1060-72. doi: 10.1021/pr050034b.
4
What have we learned from proteomic studies of serum?
Expert Rev Proteomics. 2005 Jun;2(3):279-81. doi: 10.1586/14789450.2.3.279.
5
The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales.
Brief Funct Genomic Proteomic. 2005 Feb;3(4):322-31. doi: 10.1093/bfgp/3.4.322.
6
Serum proteomics profiling--a young technology begins to mature.
Nat Biotechnol. 2005 Mar;23(3):291-2. doi: 10.1038/nbt0305-291.
8
Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum.
Bioinformatics. 2005 May 1;21(9):1764-75. doi: 10.1093/bioinformatics/bti254. Epub 2005 Jan 26.
10
Detecting differential gene expression with a semiparametric hierarchical mixture method.
Biostatistics. 2004 Apr;5(2):155-76. doi: 10.1093/biostatistics/5.2.155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验