Morris Jeffrey S, Brown Philip J, Herrick Richard C, Baggerly Keith A, Coombes Kevin R
The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
Biometrics. 2008 Jun;64(2):479-89. doi: 10.1111/j.1541-0420.2007.00895.x. Epub 2007 Sep 20.
In this article, we apply the recently developed Bayesian wavelet-based functional mixed model methodology to analyze MALDI-TOF mass spectrometry proteomic data. By modeling mass spectra as functions, this approach avoids reliance on peak detection methods. The flexibility of this framework in modeling nonparametric fixed and random effect functions enables it to model the effects of multiple factors simultaneously, allowing one to perform inference on multiple factors of interest using the same model fit, while adjusting for clinical or experimental covariates that may affect both the intensities and locations of peaks in the spectra. For example, this provides a straightforward way to account for systematic block and batch effects that characterize these data. From the model output, we identify spectral regions that are differentially expressed across experimental conditions, in a way that takes both statistical and clinical significance into account and controls the Bayesian false discovery rate to a prespecified level. We apply this method to two cancer studies.
在本文中,我们应用最近开发的基于贝叶斯小波的函数混合模型方法来分析基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)蛋白质组学数据。通过将质谱图建模为函数,这种方法避免了对峰检测方法的依赖。该框架在对非参数固定效应和随机效应函数进行建模时的灵活性,使其能够同时对多个因素的影响进行建模,从而允许使用相同的模型拟合对多个感兴趣的因素进行推断,同时调整可能影响光谱中峰强度和位置的临床或实验协变量。例如,这提供了一种直接的方法来考虑表征这些数据的系统区组和批次效应。从模型输出中,我们识别出在不同实验条件下差异表达的光谱区域,其方式兼顾了统计意义和临床意义,并将贝叶斯错误发现率控制在预先指定的水平。我们将此方法应用于两项癌症研究。