Suppr超能文献

使用变分函数混合模型的超快速近似推理

Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.

作者信息

Huo Shuning, Morris Jeffrey S, Zhu Hongxiao

机构信息

Department of Statistics, Virginia Tech.

Department of Biostatistics, Epidemiology and Informatics, Department of Statistics, University of Pennsylvania.

出版信息

J Comput Graph Stat. 2023;32(2):353-365. doi: 10.1080/10618600.2022.2107532. Epub 2022 Oct 4.

Abstract

While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. Supplementary materials are available online.

摘要

虽然贝叶斯函数混合模型已被证明在对具有各种复杂结构的函数数据进行建模时有效,但由于后验采样中涉及的计算挑战,它们在极高维数据中的应用受到限制。我们引入了一个新的计算框架,该框架能够对函数形式的高维数据进行超快速近似推断。该框架采用简约基来表示函数观测值,这有助于在基空间中进行高效压缩和并行计算。我们不是执行昂贵的马尔可夫链蒙特卡罗采样,而是使用变分贝叶斯近似后验分布,并采用快速迭代算法来估计近似分布的参数。我们的方法有助于在基空间中进行快速多重检验程序,可用于识别反映样本组间差异的显著局部区域。我们进行了两项模拟研究来评估近似推断的性能,并通过使用蛋白质组质谱数据集和脑成像数据集展示了所提出方法的应用。补充材料可在线获取。

相似文献

1
Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.
J Comput Graph Stat. 2023;32(2):353-365. doi: 10.1080/10618600.2022.2107532. Epub 2022 Oct 4.
2
Variational Hamiltonian Monte Carlo via Score Matching.
Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25.
3
Functional regression via variational Bayes.
Electron J Stat. 2011 Jan 1;5:572-602. doi: 10.1214/11-ejs619.
4
Fast approximate inference for multivariate longitudinal data.
Biostatistics. 2022 Dec 12;24(1):177-192. doi: 10.1093/biostatistics/kxab021.
5
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.
6
Variational methods for fitting complex Bayesian mixed effects models to health data.
Stat Med. 2016 Jan 30;35(2):165-88. doi: 10.1002/sim.6737. Epub 2015 Sep 28.
7
Variational Bayes Inference Algorithm for the Saturated Diagnostic Classification Model.
Psychometrika. 2020 Dec;85(4):973-995. doi: 10.1007/s11336-020-09739-w. Epub 2021 Jan 9.
8
Sparse Variational Analysis of Linear Mixed Models for Large Data Sets.
Stat Probab Lett. 2011 Aug 1;81(8):1056-1062. doi: 10.1016/j.spl.2011.02.029.
9
Latent-space variational bayes.
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2236-42. doi: 10.1109/TPAMI.2008.157.
10
Bayesian estimation of beta mixture models with variational inference.
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2160-73. doi: 10.1109/TPAMI.2011.63.

本文引用的文献

1
Quantile Function on Scalar Regression Analysis for Distributional Data.
J Am Stat Assoc. 2020;115(529):90-106. doi: 10.1080/01621459.2019.1609969. Epub 2019 Jun 21.
2
Bayesian Semiparametric Functional Mixed Models for Serially Correlated Functional Data, with Application to Glaucoma Data.
J Am Stat Assoc. 2019;114(526):495-513. doi: 10.1080/01621459.2018.1476242. Epub 2018 Aug 15.
3
Robust and Gaussian spatial functional regression models for analysis of event-related potentials.
Neuroimage. 2018 Nov 1;181:501-512. doi: 10.1016/j.neuroimage.2018.07.006. Epub 2018 Jul 6.
4
Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study.
Comput Stat Data Anal. 2017 Jul;111:88-101. doi: 10.1016/j.csda.2017.02.004. Epub 2017 Feb 15.
5
Comparison and Contrast of Two General Functional Regression Modeling Frameworks.
Stat Modelling. 2017 Feb;17(1-2):59-85. doi: 10.1177/1471082X16681875. Epub 2017 Feb 16.
6
Functional CAR models for large spatially correlated functional datasets.
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
7
Statistical methods and computing for big data.
Stat Interface. 2016;9(4):399-414. doi: 10.4310/SII.2016.v9.n4.a1.
8
Bayesian function-on-function regression for multilevel functional data.
Biometrics. 2015 Sep;71(3):563-74. doi: 10.1111/biom.12299. Epub 2015 Mar 18.
10
Functional Generalized Additive Models.
J Comput Graph Stat. 2014;23(1):249-269. doi: 10.1080/10618600.2012.729985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验