Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida.
CNS Neurosci Ther. 2019 Jul;25(7):837-858. doi: 10.1111/cns.13141. Epub 2019 Apr 25.
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
线粒体是高度整合的细胞器,对细胞适应和减轻不良生理至关重要。最近的研究表明,基本的信号转导途径将线粒体底物纳入其生物学程序。可逆磷酸化作为一种有用的机制,正在出现以根据细胞变化调节线粒体功能。关键的丝氨酸/苏氨酸蛋白激酶,如 c-Jun N 末端激酶 (JNK)、蛋白激酶 A (PKA)、PTEN 诱导的激酶-1 (PINK1) 和 AMP 依赖的蛋白激酶 (AMPK),容易易位到外线粒体膜 (OMM),即线粒体-细胞通讯的界面。OMM 蛋白激酶磷酸化多种线粒体底物,这些底物对细胞器动力学、蛋白输入、呼吸复合物活性、抗氧化能力和细胞凋亡有不同的影响。OMM 磷酸化事件可以通过局部蛋白磷酸酶的作用来调节,如丝裂原激活蛋白激酶磷酸酶-1 (MKP-1) 和蛋白磷酸酶 2A (PP2A),以调节信号的程度和持续时间。OMM 信号转导的中心介质是支架蛋白,因为这些辅助蛋白的相对丰度决定了线粒体表面信号事件的幅度和持续时间,从而决定了局部信号转导途径的生物学结果。支架蛋白的浓度,如 A 激酶锚定蛋白 (AKAP) 和 Sab(或 SH3 结合蛋白 5-SH3BP5),已被证明分别影响帕金森病 (PD) 模型中的神经元存活和易感性,强调了 OMM 信号对健康和疾病的重要性。尽管最近取得了进展,但对于 OMM 信号的机制仍有许多需要发现。尽管如此,增强有益的 OMM 信号事件和抑制线粒体表面有害的蛋白-蛋白相互作用,可能代表着恢复线粒体健康和动态平衡、减轻 PD 等疾病中细胞器功能障碍的高度选择性方法。