Suppr超能文献

同时载硫酸长春新碱和姜黄素的 mPEG-PLGA 纳米粒的制备条件对其粒径和包封性能的影响。

Effect of preparation conditions on the size and encapsulation properties of mPEG-PLGA nanoparticles simultaneously loaded with vincristine sulfate and curcumin.

机构信息

Chongqing Key Laboratory of Biochemistry & Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.

出版信息

Pharm Dev Technol. 2013 May-Jun;18(3):694-700. doi: 10.3109/10837450.2012.696267. Epub 2012 Jun 7.

Abstract

This study prepared monomethoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA) nanoparticles simultaneously loaded with vincristine sulfate (Vin) and curcumin (Cur) via O/W emulsion solvent evaporation. Five independent processing parameters were systematically evaluated to enhance the entrapment of dual agents with different properties (i.e. Vin and Cur, which are the hydrophilic and hydrophobic, respectively) into mPEG-PLGA nanoparticles and to control the particle size. The approaches used to investigate the enhancement of drug entrapment efficiencies and control over the particle size included mPEG-PLGA concentration, polyvinyl alcohol (PVA) concentration, initial Vin/Cur content, dichloromethane-to-acetone volume ratio, and aqueous-to-organic phase volume ratio. The nanoparticles produced using the optimum formulation conditions had a particle size of 131.5 nm with a low polydispersity index of 0.047. The entrapment efficiencies were 63.52 ± 2.36% for Vin and 54.60 ± 2.46% for Cur (n = 3). The drug loadings were 1.06 ± 0.04% for Vin and 3.64 ± 0.16% for Cur (n = 3).

摘要

本研究通过 O/W 乳液溶剂蒸发法同时制备载硫酸长春新碱(Vin)和姜黄素(Cur)的单甲氧基聚乙二醇-聚(乳酸-共-乙醇酸)(mPEG-PLGA)纳米粒。系统评估了 5 个独立的工艺参数,以提高具有不同性质的两种药物(即亲水性的 Vin 和疏水性的 Cur)的包封率,并控制粒径。采用 mPEG-PLGA 浓度、聚乙烯醇(PVA)浓度、初始 Vin/Cur 含量、二氯甲烷/丙酮体积比和水/有机相体积比来研究提高药物包封效率和控制粒径的方法。使用最佳配方条件制备的纳米粒粒径为 131.5nm,多分散指数低至 0.047。Vin 的包封效率为 63.52±2.36%(n=3),Cur 的包封效率为 54.60±2.46%(n=3)。Vin 的载药量为 1.06±0.04%(n=3),Cur 的载药量为 3.64±0.16%(n=3)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验