Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
Biophys J. 2012 May 16;102(10):2345-52. doi: 10.1016/j.bpj.2012.01.061. Epub 2012 May 15.
The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design.
用于预测蛋白质结构的能量函数通常包括分子力学和基于知识的项。相比之下,我们的方法是开发稳健的基于物理和几何的方法。在这里,我们研究了简单的硬球模型在多大程度上可以用于预测侧链构象。具有已知结构的蛋白质中 Val 和 Thr 的侧链二面角 χ(1)的分布表现出独特的特征:Val 侧链主要采用 χ(1) = 180°,而 Thr 侧链通常采用 χ(1) = 60°和 300°(即 χ(1) = ±60°或 g-和 g(+)构型)。已经提出了几种假设来解释这些差异,包括残基间的空间位阻冲突和氢键相互作用。相比之下,我们表明,仅使用二肽类似物中的局部空间相互作用,就可以解释 Val 和 Thr 的观察到的侧链二面角分布。我们的结果强调了简单物理方法的强大功能及其对蛋白质工程和设计未来发展的重要性。