Jung Chol-Hee, Wong Chui E, Singh Mohan B, Bhalla Prem L
Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria, Australia.
PLoS One. 2012;7(6):e38250. doi: 10.1371/journal.pone.0038250. Epub 2012 Jun 5.
Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis.
开花是决定作物产量的重要农艺性状。大豆是一种主要的油料豆类作物,用于人类和动物饲料。豆科植物具有独特的营养和花部复杂性。我们对豆科植物花起始和发育的分子基础的了解有限。在这里,我们通过使用计算方法来研究大豆基因组中的开花调控基因,并与研究最多的模式植物拟南芥进行比较,以解决这个问题。为了进行这种比较,我们进行了全基因组直系同源组分析,随后对鉴定出的大豆开花基因进行了电子基因表达分析。基因家族的系统发育分析突出了这些候选基因之间的进化关系。我们的研究鉴定了大豆中的关键开花基因,并表明春化途径和环境温度途径在大豆中似乎是最具变异性的。对包含开花基因的直系同源组的比较表明,平均而言,每个拟南芥开花基因在大豆中有2 - 3个直系同源拷贝。我们的分析突出表明,CDF3、VRN1、SVP、AP3和PIF3基因在大豆中是富含旁系同源基因的基因。此外,大豆开花基因的基因组图谱显示这些基因随机散布在整个基因组中。旁系同源比较表明,构成最大直系同源组的大豆基因聚集在大豆16号染色体上的一个1.4 Mb区域。此外,与野生大豆(野大豆)的比较表明,有数百个单核苷酸多态性(SNP)与假定的大豆开花基因相关,并且存在可能影响大豆光信号和环境温度途径基因的结构变异。我们的研究为大豆开花途径提供了一个框架,并深入了解了短日大豆和长日植物拟南芥之间开花基因的关系和进化。