文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤相关成纤维细胞中的自噬和衰老通过糖酵解和酮体生成代谢上支持肿瘤生长和转移。

Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production.

机构信息

The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2012 Jun 15;11(12):2285-302. doi: 10.4161/cc.20718.


DOI:10.4161/cc.20718
PMID:22684298
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3383590/
Abstract

Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of "two-compartment tumor metabolism" in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.

摘要

衰老的成纤维细胞已知可促进肿瘤生长。然而,确切的机制在很大程度上仍不清楚。最近的研究将自噬与衰老的发生联系起来,为这一问题提供了重要线索。因此,自噬和衰老可能是同一生理过程的一部分,称为自噬-衰老转化(AST)。为了验证这一假设,用端粒酶(hTERT-BJ1)永生化的人成纤维细胞稳定转染自噬基因(BNIP3、CTSB 或 ATG16L1)。它们的过表达足以诱导组成型自噬表型,具有线粒体自噬、线粒体功能障碍和向有氧糖酵解转变的特征,导致 L-乳酸和酮体的产生。自噬成纤维细胞也表现出衰老的特征,p21(WAF1/CIP1)增加,这是一种 CDK 抑制剂,细胞肥大和β-半乳糖苷酶活性增加。因此,我们通过遗传方法验证了自噬-衰老转化的存在。重要的是,当与人类乳腺癌细胞共注射时,自噬性衰老的成纤维细胞促进了肿瘤的生长和转移,而与血管生成无关。当两种细胞类型共培养时,自噬性衰老的成纤维细胞刺激相邻癌细胞的线粒体代谢,通过 MitoTracker 染色可以观察到。特别是,产生大量酮体(3-羟基丁酸)的自噬 ATG16L1 成纤维细胞的作用最强,可促进转移多达 11 倍。相反,上皮癌细胞中 ATG16L1 的表达抑制肿瘤生长,表明自噬的作用具有特定的隔室特异性。因此,自噬性衰老的成纤维细胞通过旁分泌产生高能线粒体燃料,在代谢上促进肿瘤的生长和转移。我们目前的研究为“双室肿瘤代谢”在通过简单的能量转移机制驱动肿瘤生长和转移中的重要性提供了遗传支持。最后,β-半乳糖苷酶,一种已知的溶酶体酶和衰老的生物标志物,在人类乳腺癌组织的肿瘤基质中定位,为我们的假设提供了体内支持。对从人类乳腺癌中分离出的肿瘤基质的全基因组转录谱进行的生物信息学分析也验证了自噬-衰老转化的发生。综上所述,这些研究建立了宿主衰老、自噬、肿瘤微环境和癌症代谢之间新的功能联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/7d7e5488c9fb/cc-11-2285-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/9386af0e647d/cc-11-2285-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/b27ecc6c4007/cc-11-2285-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/268eeea8cd5a/cc-11-2285-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/0a1f5a8e5a74/cc-11-2285-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/ab59d7edd322/cc-11-2285-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/523e917dea46/cc-11-2285-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/b32a0ee1ed58/cc-11-2285-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/8f3165075305/cc-11-2285-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/36e29c053669/cc-11-2285-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/56909ca2813e/cc-11-2285-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/40a77aac215d/cc-11-2285-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/7839c8c9309a/cc-11-2285-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/a36553628860/cc-11-2285-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/62e27938ed97/cc-11-2285-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/7d7e5488c9fb/cc-11-2285-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/9386af0e647d/cc-11-2285-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/b27ecc6c4007/cc-11-2285-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/268eeea8cd5a/cc-11-2285-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/0a1f5a8e5a74/cc-11-2285-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/ab59d7edd322/cc-11-2285-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/523e917dea46/cc-11-2285-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/b32a0ee1ed58/cc-11-2285-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/8f3165075305/cc-11-2285-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/36e29c053669/cc-11-2285-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/56909ca2813e/cc-11-2285-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/40a77aac215d/cc-11-2285-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/7839c8c9309a/cc-11-2285-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/a36553628860/cc-11-2285-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/62e27938ed97/cc-11-2285-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f3/3383590/7d7e5488c9fb/cc-11-2285-g15.jpg

相似文献

[1]
Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production.

Cell Cycle. 2012-6-15

[2]
Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and symbiosis.

Cell Cycle. 2013-4-10

[3]
Cigarette smoke metabolically promotes cancer, via autophagy and premature aging in the host stromal microenvironment.

Cell Cycle. 2013-2-6

[4]
HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis.

Cell Cycle. 2010-9-4

[5]
Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment.

Cell Cycle. 2010-9-9

[6]
Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.

Oncotarget. 2012-8

[7]
Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth.

Cancer Biol Ther. 2011-12-15

[8]
CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis.

Cell Cycle. 2012-8-30

[9]
Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production.

Cell Cycle. 2012-10-9

[10]
Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.

Cell Cycle. 2011-12-1

引用本文的文献

[1]
Persistent accumulation of therapy-induced senescent cells: an obstacle to long-term cancer treatment efficacy.

Int J Oral Sci. 2025-8-1

[2]
RNA-binding protein AUF1 suppresses cellular senescence and glycolysis by targeting and mRNAs.

Aging (Albany NY). 2025-7-24

[3]
senescence and senolytic functional assays.

Biomater Sci. 2025-6-25

[4]
Integrative Bioinformatic Analysis of Cellular Senescence Genes in Ovarian Cancer: Molecular Subtyping, Prognostic Risk Stratification, and Chemoresistance Prediction.

Biomedicines. 2025-4-4

[5]
Cancer-associated fibroblasts, tumor and radiotherapy: interactions in the tumor micro-environment.

J Exp Clin Cancer Res. 2024-12-19

[6]
Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer.

Cell Death Discov. 2024-10-29

[7]
Senescence-related genes as prognostic indicators in breast cancer survival.

Geroscience. 2024-10-21

[8]
Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model.

J Mammary Gland Biol Neoplasia. 2024-7-17

[9]
Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment.

Cancer Commun (Lond). 2024-9

[10]
Prognostic significance of a signature based on senescence-related genes in colorectal cancer.

Geroscience. 2024-10

本文引用的文献

[1]
Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue.

Cell Cycle. 2012-4-1

[2]
Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.

Cell Cycle. 2012-3-15

[3]
Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism.

Cell Cycle. 2012-1-15

[4]
Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence.

Am J Pathol. 2012-1-9

[5]
Power surge: supporting cells "fuel" cancer cell mitochondria.

Cell Metab. 2012-1-4

[6]
Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival.

Cell Cycle. 2011-12-15

[7]
Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.

Cell Cycle. 2011-12-1

[8]
A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis.

Liver Int. 2011-9-27

[9]
Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms.

Annu Rev Pathol. 2011-11-7

[10]
Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth.

Nat Med. 2011-10-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索