The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
Cell Cycle. 2012 Jun 15;11(12):2285-302. doi: 10.4161/cc.20718.
Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased β-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of "two-compartment tumor metabolism" in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, β-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.
衰老的成纤维细胞已知可促进肿瘤生长。然而,确切的机制在很大程度上仍不清楚。最近的研究将自噬与衰老的发生联系起来,为这一问题提供了重要线索。因此,自噬和衰老可能是同一生理过程的一部分,称为自噬-衰老转化(AST)。为了验证这一假设,用端粒酶(hTERT-BJ1)永生化的人成纤维细胞稳定转染自噬基因(BNIP3、CTSB 或 ATG16L1)。它们的过表达足以诱导组成型自噬表型,具有线粒体自噬、线粒体功能障碍和向有氧糖酵解转变的特征,导致 L-乳酸和酮体的产生。自噬成纤维细胞也表现出衰老的特征,p21(WAF1/CIP1)增加,这是一种 CDK 抑制剂,细胞肥大和β-半乳糖苷酶活性增加。因此,我们通过遗传方法验证了自噬-衰老转化的存在。重要的是,当与人类乳腺癌细胞共注射时,自噬性衰老的成纤维细胞促进了肿瘤的生长和转移,而与血管生成无关。当两种细胞类型共培养时,自噬性衰老的成纤维细胞刺激相邻癌细胞的线粒体代谢,通过 MitoTracker 染色可以观察到。特别是,产生大量酮体(3-羟基丁酸)的自噬 ATG16L1 成纤维细胞的作用最强,可促进转移多达 11 倍。相反,上皮癌细胞中 ATG16L1 的表达抑制肿瘤生长,表明自噬的作用具有特定的隔室特异性。因此,自噬性衰老的成纤维细胞通过旁分泌产生高能线粒体燃料,在代谢上促进肿瘤的生长和转移。我们目前的研究为“双室肿瘤代谢”在通过简单的能量转移机制驱动肿瘤生长和转移中的重要性提供了遗传支持。最后,β-半乳糖苷酶,一种已知的溶酶体酶和衰老的生物标志物,在人类乳腺癌组织的肿瘤基质中定位,为我们的假设提供了体内支持。对从人类乳腺癌中分离出的肿瘤基质的全基因组转录谱进行的生物信息学分析也验证了自噬-衰老转化的发生。综上所述,这些研究建立了宿主衰老、自噬、肿瘤微环境和癌症代谢之间新的功能联系。
Aging (Albany NY). 2025-7-24
Biomater Sci. 2025-6-25
J Exp Clin Cancer Res. 2024-12-19
Cell Death Discov. 2024-10-29
Geroscience. 2024-10-21
J Mammary Gland Biol Neoplasia. 2024-7-17
Cell Metab. 2012-1-4
Annu Rev Pathol. 2011-11-7