The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
Cell Cycle. 2011 Dec 1;10(23):4047-64. doi: 10.4161/cc.10.23.18151.
We have recently proposed a new mechanism for explaining energy transfer in cancer metabolism. In this scenario, cancer cells behave as metabolic parasites, by extracting nutrients from normal host cells, such as fibroblasts, via the secretion of hydrogen peroxide as the initial trigger. Oxidative stress in the tumor microenvironment then leads to autophagy-driven catabolism, mitochondrial dys-function, and aerobic glycolysis. This, in turn, produces high-energy nutrients (such as L-lactate, ketones, and glutamine) that drive the anabolic growth of tumor cells, via oxidative mitochondrial metabolism. A logical prediction of this new "parasitic" cancer model is that tumor-associated fibroblasts should show evidence of mitochondrial dys-function (mitophagy and aerobic glycolysis). In contrast, epithelial cancer cells should increase their oxidative mitochondrial capacity. To further test this hypothesis, here we subjected frozen sections from human breast tumors to a staining procedure that only detects functional mitochondria. This method detects the in situ enzymatic activity of cytochrome C oxidase (COX), also known as Complex IV. Remarkably, cancer cells show an over-abundance of COX activity, while adjacent stromal cells remain essentially negative. Adjacent normal ductal epithelial cells also show little or no COX activity, relative to epithelial cancer cells. Thus, oxidative mitochondrial activity is selectively amplified in cancer cells. Although COX activity staining has never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. Similar results were obtained with NADH activity staining, which measures Complex I activity, and succinate dehydrogenase (SDH) activity staining, which measures Complex II activity. COX and NADH activities were blocked by electron transport inhibitors, such as Metformin. This has mechanistic and clinical implications for using Metformin as an anti-cancer drug, both for cancer therapy and chemo-prevention. We also immuno-stained human breast cancers for a series of well-established protein biomarkers of metabolism. More specifically, we now show that cancer-associated fibroblasts over-express markers of autophagy (cathepsin B), mitophagy (BNIP3L), and aerobic glycolysis (MCT4). Conversely, epithelial cancer cells show the over-expression of a mitochondrial membrane marker (TOMM20), as well as key components of Complex IV (MT-CO1) and Complex II (SDH-B). We also validated our observations using a bioinformatics approach with data from > 2,000 breast cancer patients, which showed the transcriptional upregulation of mitochondrial oxidative phosphorylation (OXPHOS) in human breast tumors (p < 10(-20)), and a specific association with metastasis. Therefore, upregulation of OXPHOS in epithelial tumor cells is a common feature of human breast cancers. In summary, our data provide the first functional in vivo evidence that epithelial cancer cells perform enhanced mitochondrial oxidative phosphorylation, allowing them to produce high amounts of ATP. Thus, we believe that mitochondria are both the "powerhouse" and "Achilles' heel" of cancer cells.
我们最近提出了一种新的机制来解释癌症代谢中的能量转移。在这种情况下,癌细胞表现为代谢寄生虫,通过分泌过氧化氢作为初始触发,从正常宿主细胞(如成纤维细胞)中提取营养物质。肿瘤微环境中的氧化应激导致自噬驱动的分解代谢、线粒体功能障碍和有氧糖酵解。反过来,这产生了高能营养物质(如 L-乳酸、酮体和谷氨酰胺),通过氧化线粒体代谢驱动肿瘤细胞的合成代谢生长。这个新的“寄生”癌症模型的一个合理预测是,肿瘤相关成纤维细胞应该显示出线粒体功能障碍的证据(自噬和有氧糖酵解)。相比之下,上皮癌细胞应该增加其氧化线粒体的容量。为了进一步验证这个假设,我们在这里对取自人类乳腺癌的冷冻切片进行了一种染色程序,该程序仅检测功能线粒体。这种方法检测细胞色素 C 氧化酶(COX)的原位酶活性,也称为复合物 IV。值得注意的是,癌细胞表现出 COX 活性的过度丰富,而相邻的基质细胞基本上呈阴性。相邻的正常导管上皮细胞与上皮癌细胞相比,COX 活性也很少或没有。因此,氧化线粒体活性在癌细胞中被选择性放大。虽然 COX 活性染色从未应用于癌症组织,但现在它可以常规用于区分癌症细胞和正常细胞,并在癌症手术中建立阴性边缘。用 NADH 活性染色(测量复合物 I 活性)和琥珀酸脱氢酶(SDH)活性染色(测量复合物 II 活性)得到了类似的结果。COX 和 NADH 活性被电子传递抑制剂(如二甲双胍)阻断。这对使用二甲双胍作为抗癌药物具有机制和临床意义,无论是用于癌症治疗还是化学预防。我们还对人类乳腺癌进行了一系列经过充分验证的代谢蛋白生物标志物的免疫染色。更具体地说,我们现在表明,肿瘤相关成纤维细胞过度表达自噬(组织蛋白酶 B)、线粒体自噬(BNIP3L)和有氧糖酵解(MCT4)的标志物。相反,上皮癌细胞表现出线粒体膜标志物(TOMM20)以及复合物 IV(MT-CO1)和复合物 II(SDH-B)的关键成分的过表达。我们还使用 > 2000 名乳腺癌患者的数据的生物信息学方法验证了我们的观察结果,结果表明人类乳腺癌中存在线粒体氧化磷酸化(OXPHOS)的转录上调(p < 10(-20)),并且与转移有特定关联。因此,上皮肿瘤细胞中 OXPHOS 的上调是人类乳腺癌的一个共同特征。总之,我们的数据提供了第一个功能体内证据,表明上皮癌细胞进行了增强的线粒体氧化磷酸化,使它们能够产生大量的 ATP。因此,我们认为线粒体既是癌细胞的“动力源”,也是“阿喀琉斯之踵”。