School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
Comput Intell Neurosci. 2012;2012:275073. doi: 10.1155/2012/275073. Epub 2012 May 29.
Characterizing brain connectivity between neural signals is key to understanding brain function. Current measures such as coherence heavily rely on Fourier or wavelet transform, which inevitably assume the signal stationarity and place severe limits on its time-frequency resolution. Here we addressed these issues by introducing a noise-assisted instantaneous coherence (NAIC) measure based on multivariate mode empirical decomposition (MEMD) coupled with Hilbert transform to achieve high-resolution time frequency representation of neural coherence. In our method, fully data-driven MEMD, together with Hilbert transform, is first employed to provide time-frequency power spectra for neural data. Such power spectra are typically sparse and of high resolution, that is, there usually exist many zero values, which result in numerical problems for directly computing coherence. Hence, we propose to add random noise onto the spectra, making coherence calculation feasible. Furthermore, a statistical randomization procedure is designed to cancel out the effect of the added noise. Computer simulations are first performed to verify the effectiveness of NAIC. Local field potentials collected from visual cortex of macaque monkey while performing a generalized flash suppression task are then used to demonstrate the usefulness of our NAIC method to provide highresolution time-frequency coherence measure for connectivity analysis of neural data.
刻画神经信号之间的脑连接是理解大脑功能的关键。当前的测量方法,如相干性,严重依赖傅里叶或小波变换,这不可避免地假设信号的平稳性,并对其时频分辨率施加严格的限制。在这里,我们通过引入一种基于多元模态经验分解(MEMD)和希尔伯特变换的噪声辅助瞬时相干性(NAIC)测量方法,解决了这些问题,从而实现了神经相干性的高分辨率时频表示。在我们的方法中,首先采用完全数据驱动的 MEMD 与希尔伯特变换为神经数据提供时频功率谱。这种功率谱通常是稀疏的,分辨率很高,也就是说,通常存在许多零值,这导致直接计算相干性会出现数值问题。因此,我们建议在谱上添加随机噪声,以使相干性计算成为可能。此外,设计了一个统计随机化程序来消除添加噪声的影响。首先进行计算机模拟以验证 NAIC 的有效性。然后使用在执行广义闪光抑制任务时从猕猴视觉皮层采集的局部场电位来证明我们的 NAIC 方法的有效性,以提供用于神经数据连接分析的高分辨率时频相干性测量。