Harvard Medical School, Boston, MA, USA.
Respir Physiol Neurobiol. 2012 Aug 15;183(2):75-84. doi: 10.1016/j.resp.2012.06.008. Epub 2012 Jun 9.
The dynamic mechanical properties of the respiratory system reflect the ensemble behavior of its constituent structural elements. This study assessed the appropriateness of constant-phase descriptions of respiratory tissue viscoelasticity at various distending pressures. We measured the mechanical input impedance (Z) of the lungs, chest wall and total respiratory system in 12 dogs at mean airway pressures from 5 to 30 cm H(2)O. Each Z was fitted with a constant-phase model which provided estimates tissue damping (G), elastance (H), and hysteresivity (η=G/H). Both G and H sharply increased with increasing distending pressure for the lungs and chest wall, while η attained a minimum near 15-20 cm H(2)O. Model fitting errors for the lungs and total respiratory system increased for distending pressures greater than 20 cm H(2)O, indicating that constant-phase descriptions of parenchymal and respiratory system viscoelasticty may be inappropriate at volumes closer to total lung capacity. Such behavior may reflect alterations in load distribution across various parenchymal stress-bearing elements.
呼吸系统的动态力学特性反映了其组成结构元素的整体行为。本研究评估了在不同膨胀压力下,呼吸系统粘弹性的恒相描述的适宜性。我们在 12 只狗中测量了平均气道压力为 5 至 30 厘米水柱时的肺、胸壁和总呼吸系统的机械输入阻抗(Z)。每个 Z 都用恒相模型进行拟合,该模型提供了组织阻尼(G)、弹性(H)和滞后性(η=G/H)的估计值。对于肺和胸壁,G 和 H 随着膨胀压力的增加而急剧增加,而 η 在接近 15-20 厘米水柱时达到最小值。对于膨胀压力大于 20 厘米水柱时,肺和总呼吸系统模型拟合误差增加,这表明在更接近总肺活量的容积下,实质和呼吸系统粘弹性的恒相描述可能不合适。这种行为可能反映了各种实质应力承载元素之间的负载分布的改变。