Suppr超能文献

通气频率和实质硬度对犬肺模型中血流和压力分布的影响。

Impact of ventilation frequency and parenchymal stiffness on flow and pressure distribution in a canine lung model.

作者信息

Amini Reza, Kaczka David W

机构信息

Harvard Medical School, Boston, MA, USA.

出版信息

Ann Biomed Eng. 2013 Dec;41(12):2699-711. doi: 10.1007/s10439-013-0866-7. Epub 2013 Jul 20.

Abstract

To determine the impact of ventilation frequency, lung volume, and parenchymal stiffness on ventilation distribution, we developed an anatomically-based computational model of the canine lung. Each lobe of the model consists of an asymmetric branching airway network subtended by terminal, viscoelastic acinar units. The model allows for empiric dependencies of airway segment dimensions and parenchymal stiffness on transpulmonary pressure. We simulated the effects of lung volume and parenchymal recoil on global lung impedance and ventilation distribution from 0.1 to 100 Hz, with mean transpulmonary pressures from 5 to 25 cm H2O. With increasing lung volume, the distribution of acinar flows narrowed and became more synchronous for frequencies below resonance. At higher frequencies, large variations in acinar flow were observed. Maximum acinar flow occurred at first antiresonance frequency, where lung impedance achieved a local maximum. The distribution of acinar pressures became very heterogeneous and amplified relative to tracheal pressure at the resonant frequency. These data demonstrate the important interaction between frequency and lung tissue stiffness on the distribution of acinar flows and pressures. These simulations provide useful information for the optimization of frequency, lung volume, and mean airway pressure during conventional ventilation or high frequency oscillation (HFOV). Moreover our model indicates that an optimal HFOV bandwidth exists between the resonant and antiresonant frequencies, for which interregional gas mixing is maximized.

摘要

为了确定通气频率、肺容积和实质硬度对通气分布的影响,我们构建了一个基于解剖结构的犬肺计算模型。该模型的每个肺叶都由一个不对称分支气道网络组成,其末端为粘弹性腺泡单位。该模型考虑了气道段尺寸和实质硬度对跨肺压的经验依赖性。我们模拟了肺容积和实质回缩对0.1至100Hz的整体肺阻抗和通气分布的影响,平均跨肺压为5至25cmH₂O。随着肺容积增加,对于低于共振频率的情况,腺泡流的分布变窄且变得更加同步。在较高频率下,观察到腺泡流有很大变化。最大腺泡流出现在第一个反共振频率处,此时肺阻抗达到局部最大值。在共振频率下,腺泡压力的分布变得非常不均匀,并且相对于气管压力有所放大。这些数据表明频率与肺组织硬度在腺泡流和压力分布方面存在重要相互作用。这些模拟为传统通气或高频振荡通气(HFOV)期间频率、肺容积和平均气道压力的优化提供了有用信息。此外,我们的模型表明,在共振频率和反共振频率之间存在一个最佳的HFOV带宽,在此带宽下区域间气体混合最大化。

相似文献

1
Impact of ventilation frequency and parenchymal stiffness on flow and pressure distribution in a canine lung model.
Ann Biomed Eng. 2013 Dec;41(12):2699-711. doi: 10.1007/s10439-013-0866-7. Epub 2013 Jul 20.
2
Parenchymal strain heterogeneity during oscillatory ventilation: why two frequencies are better than one.
J Appl Physiol (1985). 2018 Mar 1;124(3):653-663. doi: 10.1152/japplphysiol.00615.2017. Epub 2017 Oct 19.
3
Regional gas transport in the heterogeneous lung during oscillatory ventilation.
J Appl Physiol (1985). 2016 Dec 1;121(6):1306-1318. doi: 10.1152/japplphysiol.00097.2016. Epub 2016 Oct 7.
6
Total and regional lung volume changes during high-frequency oscillatory ventilation (HFOV) of the normal lung.
Respir Physiol Neurobiol. 2009 Jan 1;165(1):54-60. doi: 10.1016/j.resp.2008.10.010. Epub 2008 Oct 18.
7
High-frequency oscillation in an adult porcine model.
Crit Care Med. 1994 Sep;22(9 Suppl):S37-48. doi: 10.1097/00003246-199422091-00003.
8
Simulating ventilation distribution in heterogenous lung injury using a binary tree data structure.
Comput Biol Med. 2011 Oct;41(10):936-45. doi: 10.1016/j.compbiomed.2011.08.004. Epub 2011 Aug 27.
9
Lung pressures and gas transport during high-frequency airway and chest wall oscillation.
J Appl Physiol (1985). 1989 Sep;67(3):985-92. doi: 10.1152/jappl.1989.67.3.985.
10
Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):788-800. doi: 10.1152/jappl.1984.57.3.788.

引用本文的文献

1
Gas transport mechanisms during high-frequency ventilation.
Respir Res. 2024 Dec 28;25(1):446. doi: 10.1186/s12931-024-03049-w.
2
Design and Implementation of a Computer-Controlled Hybrid Oscillatory Ventilator.
J Med Device. 2025 Mar 1;19(1):011001. doi: 10.1115/1.4066679. Epub 2024 Oct 22.
4
Assessment of Heterogeneity in Lung Structure and Function During Mechanical Ventilation: A Review of Methodologies.
J Eng Sci Med Diagn Ther. 2022 Nov 1;5(4):040801. doi: 10.1115/1.4054386. Epub 2022 May 11.
5
Regional Gas Transport During Conventional and Oscillatory Ventilation Assessed by Xenon-Enhanced Computed Tomography.
Ann Biomed Eng. 2021 Sep;49(9):2377-2388. doi: 10.1007/s10439-021-02767-2. Epub 2021 May 4.
6
Oscillatory ventilation redux: alternative perspectives on ventilator-induced lung injury in the acute respiratory distress syndrome.
Curr Opin Physiol. 2021 Jun;21:36-43. doi: 10.1016/j.cophys.2021.03.006. Epub 2021 Apr 20.
8
Reactance and elastance as measures of small airways response to bronchodilator in asthma.
J Appl Physiol (1985). 2019 Dec 1;127(6):1772-1781. doi: 10.1152/japplphysiol.01131.2018. Epub 2019 Oct 24.
9
High-Frequency Oscillatory Ventilation and Ventilator-Induced Lung Injury: Size Does Matter.
Crit Care Med. 2020 Jan;48(1):e66-e73. doi: 10.1097/CCM.0000000000004073.
10
Strain, strain rate, and mechanical power: An optimization comparison for oscillatory ventilation.
Int J Numer Method Biomed Eng. 2019 Oct;35(10):e3238. doi: 10.1002/cnm.3238. Epub 2019 Aug 6.

本文引用的文献

1
High-frequency oscillatory ventilation on shaky ground.
N Engl J Med. 2013 Feb 28;368(9):863-5. doi: 10.1056/NEJMe1300103. Epub 2013 Jan 22.
2
High-frequency oscillation in early acute respiratory distress syndrome.
N Engl J Med. 2013 Feb 28;368(9):795-805. doi: 10.1056/NEJMoa1215554. Epub 2013 Jan 22.
3
High-frequency oscillation for acute respiratory distress syndrome.
N Engl J Med. 2013 Feb 28;368(9):806-13. doi: 10.1056/NEJMoa1215716. Epub 2013 Jan 22.
4
Constant-phase descriptions of canine lung, chest wall, and total respiratory system viscoelasticity: effects of distending pressure.
Respir Physiol Neurobiol. 2012 Aug 15;183(2):75-84. doi: 10.1016/j.resp.2012.06.008. Epub 2012 Jun 9.
5
A computational model of the topographic distribution of ventilation in healthy human lungs.
J Theor Biol. 2012 May 7;300:222-31. doi: 10.1016/j.jtbi.2012.01.042. Epub 2012 Feb 5.
6
Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance.
J Appl Physiol (1985). 2012 Jan;112(1):167-75. doi: 10.1152/japplphysiol.00633.2011. Epub 2011 Oct 13.
7
Simulating ventilation distribution in heterogenous lung injury using a binary tree data structure.
Comput Biol Med. 2011 Oct;41(10):936-45. doi: 10.1016/j.compbiomed.2011.08.004. Epub 2011 Aug 27.
9
The effects of geometry on airflow in the acinar region of the human lung.
J Biomech. 2009 Aug 7;42(11):1635-42. doi: 10.1016/j.jbiomech.2009.04.046. Epub 2009 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验