Suppr超能文献

密度因人而异:标准乳房 X 光片上的乳腺密度的视觉评估与半自动评估。

Density is in the eye of the beholder: visual versus semi-automated assessment of breast density on standard mammograms.

机构信息

Department of Radiology, Maastricht University Medical Center, P.O.Box 5800, 6202 AZ, Maastricht, The Netherlands,

出版信息

Insights Imaging. 2012 Feb;3(1):91-9. doi: 10.1007/s13244-011-0139-7. Epub 2011 Nov 20.

Abstract

OBJECTIVES

Visual inspection is generally used to assess breast density. Our study aim was to compare visual assessment of breast density of experienced and inexperienced readers with semi-automated analysis of breast density.

METHODS

Breast density was assessed by an experienced and an inexperienced reader in 200 mammograms and scored according to the quantitative BI-RADS classification. Breast density was also assessed by dedicated software using a semi-automated thresholding technique. Agreement between breast density classification of both readers as well as agreement between their assessment versus the semi-automated analysis as reference standard was expressed as the weighted kappa value.

RESULTS

Using the semi-automated analysis, agreement between breast density measurements of both breasts in both projections was excellent (ICC >0.9, P < 0.0001). Reproducibility of the semi-automated analysis was excellent (ICC >0.8, P < 0.0001). The experienced reader correctly classified the BI-RADS breast density classification in 58.5% of the cases. Classification was overestimated in 35.5% of the cases and underestimated in 6.0% of the cases. Results of the inexperienced reader were less accurate. Agreement between the classification of both readers versus the semi-automated analysis was considered only moderate with weighted kappa values of 0.367 (experienced reader) and 0.232 (inexperienced reader).

CONCLUSION

Visual assessment of breast density on mammograms is inaccurate and observer-dependent.

摘要

目的

视觉评估通常用于评估乳房密度。我们的研究目的是比较有经验和无经验的读者对乳房密度的视觉评估与乳房密度的半自动分析。

方法

在 200 张乳房 X 光片中,由一位有经验和一位无经验的读者进行乳房密度评估,并根据定量 BI-RADS 分类进行评分。使用半自动阈值技术的专用软件也对乳房密度进行评估。两位读者的乳房密度分类之间以及他们的评估与半自动分析作为参考标准之间的一致性均以加权 kappa 值表示。

结果

使用半自动分析,两个投影中两个乳房的乳房密度测量之间的一致性非常好(ICC>0.9,P<0.0001)。半自动分析的再现性非常好(ICC>0.8,P<0.0001)。有经验的读者正确分类了 58.5%的 BI-RADS 乳房密度分类。在 35.5%的情况下分类过高,在 6.0%的情况下分类过低。无经验读者的结果准确性较低。两位读者的分类与半自动分析之间的一致性被认为仅为中度,加权 kappa 值分别为 0.367(有经验的读者)和 0.232(无经验的读者)。

结论

乳房 X 光片上的乳房密度视觉评估不准确且依赖于观察者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edea/3292640/5f51d66c9c9c/13244_2011_139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验