Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
School of Computing, University of Southern Mississippi, Long Beach, MS, 39560, USA.
J Nucl Cardiol. 2020 Jun;27(3):976-987. doi: 10.1007/s12350-019-01594-2. Epub 2019 Jan 28.
The performance of left ventricular (LV) functional assessment using gated myocardial perfusion SPECT (MPS) relies on the accuracy of segmentation. Current methods require manual adjustments that are tedious and subjective. We propose a novel machine-learning-based method to automatically segment LV myocardium and measure its volume in gated MPS imaging without human intervention.
We used an end-to-end fully convolutional neural network to segment LV myocardium by delineating its endocardial and epicardial surface. A novel compound loss function, which encourages similarity and penalizes discrepancy between prediction and training dataset, is utilized in training stage to achieve excellent performance. We retrospectively investigated 32 normal patients and 24 abnormal patients, whose LV myocardial contours automatically segmented by our method were compared with those delineated by physicians as the ground truth.
The results of our method demonstrated very good agreement with the ground truth. The average DSC metrics and Hausdorff distance of the contours delineated by our method are larger than 0.900 and less than 1 cm, respectively, among all 32 + 24 patients of all phases. The correlation coefficient of the LV myocardium volume between ground truth and our results is 0.910 ± 0.061 (P < 0.001), and the mean relative error of LV myocardium volume is - 1.09 ± 3.66%.
These results strongly indicate the feasibility of our method in accurately quantifying LV myocardium volume change over the cardiac cycle. The learning-based segmentation method in gated MPS imaging has great promise for clinical use.
门控心肌灌注 SPECT(MPS)的左心室(LV)功能评估的性能依赖于分割的准确性。目前的方法需要手动调整,既繁琐又主观。我们提出了一种新的基于机器学习的方法,无需人工干预即可自动分割门控 MPS 成像中的 LV 心肌并测量其体积。
我们使用端到端全卷积神经网络通过描绘 LV 心肌的内界膜和心外膜表面来分割 LV 心肌。在训练阶段使用新的复合损失函数,鼓励预测和训练数据集之间的相似性,并惩罚差异,以实现优异的性能。我们回顾性地研究了 32 名正常患者和 24 名异常患者,我们的方法自动分割的 LV 心肌轮廓与医生作为基准的轮廓进行了比较。
我们的方法的结果与基准非常吻合。我们的方法勾勒的轮廓的平均 DSC 指标和 Hausdorff 距离在所有相位的所有 32+24 名患者中均大于 0.900 和小于 1cm。基准和我们的结果之间的 LV 心肌体积的相关系数为 0.910±0.061(P<0.001),LV 心肌体积的平均相对误差为-1.09±3.66%。
这些结果强烈表明,我们的方法在准确量化心脏周期中 LV 心肌体积变化方面具有可行性。门控 MPS 成像中的基于学习的分割方法具有很大的临床应用前景。