Suppr超能文献

单案例时间序列数据流中的推断精度:当自相关数据中出现缺失观测值时,EM 程序的表现如何?

Inferential precision in single-case time-series data streams: how well does the em procedure perform when missing observations occur in autocorrelated data?

机构信息

University of Tennessee, Knoxville, TN, USA.

出版信息

Behav Ther. 2012 Sep;43(3):679-85. doi: 10.1016/j.beth.2011.10.001. Epub 2011 Nov 6.

Abstract

The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977). This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed.

摘要

基于案例的时间序列设计是一种可行的治疗结果研究方法。然而,文献并没有充分解决这种自相关数据流中缺失观测值的问题。主要问题是,在观测值不独立的情况下,缺失观测值在多大程度上影响推断?可用的缺失数据替换程序是否保留了推断的完整性?自相关的程度是否重要?我们使用单例干预研究的蒙特卡罗模拟建模来解决这些问题。我们发现,当使用期望最大化算法(更通常称为 EM 过程(Dempster、Laird 和 Rubin,1977))替换缺失数据时,缺失数据的比例为 10%、20%、30%和 40%时,灵敏度在可接受范围内。这适用于滞后 1 自相关估计值低于 0.80 的数据流。随着自相关估计值接近 0.80,替换过程会产生不可接受的功率谱。讨论了这些发现的意义和未来研究的方向。

相似文献

引用本文的文献

2
A Priori Justification for Effect Measures in Single-Case Experimental Designs.单案例实验设计中效应量度的先验正当性
Perspect Behav Sci. 2021 Mar 25;45(1):153-186. doi: 10.1007/s40614-021-00282-2. eCollection 2022 Mar.

本文引用的文献

2
Choosing among techniques for quantifying single-case intervention effectiveness.选择量化单例干预效果的技术。
Behav Ther. 2011 Sep;42(3):533-45. doi: 10.1016/j.beth.2010.12.003. Epub 2011 Mar 30.
5
Estimating slope and level change in N = 1 designs.估算 N = 1 设计中的斜率和水平变化。
Behav Modif. 2010 May;34(3):195-218. doi: 10.1177/0145445510363306. Epub 2010 Mar 16.
7
Comparing N = 1 effect size indices in presence of autocorrelation.在存在自相关的情况下比较N = 1效应量指标。
Behav Modif. 2008 Nov;32(6):860-75. doi: 10.1177/0145445508318866. Epub 2008 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验