University of Tennessee, Knoxville, TN, USA.
Behav Ther. 2012 Sep;43(3):679-85. doi: 10.1016/j.beth.2011.10.001. Epub 2011 Nov 6.
The case-based time-series design is a viable methodology for treatment outcome research. However, the literature has not fully addressed the problem of missing observations with such autocorrelated data streams. Mainly, to what extent do missing observations compromise inference when observations are not independent? Do the available missing data replacement procedures preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo simulation modeling of a single-subject intervention study to address these questions. We find power sensitivity to be within acceptable limits across four proportions of missing observations (10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977). This applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The implications of these findings and directions for future research are discussed.
基于案例的时间序列设计是一种可行的治疗结果研究方法。然而,文献并没有充分解决这种自相关数据流中缺失观测值的问题。主要问题是,在观测值不独立的情况下,缺失观测值在多大程度上影响推断?可用的缺失数据替换程序是否保留了推断的完整性?自相关的程度是否重要?我们使用单例干预研究的蒙特卡罗模拟建模来解决这些问题。我们发现,当使用期望最大化算法(更通常称为 EM 过程(Dempster、Laird 和 Rubin,1977))替换缺失数据时,缺失数据的比例为 10%、20%、30%和 40%时,灵敏度在可接受范围内。这适用于滞后 1 自相关估计值低于 0.80 的数据流。随着自相关估计值接近 0.80,替换过程会产生不可接受的功率谱。讨论了这些发现的意义和未来研究的方向。