Department of Geosciences, University of Oslo, Pb, 1047, Blindern, Oslo, Norway.
Geochem Trans. 2012 Jun 14;13(1):5. doi: 10.1186/1467-4866-13-5.
Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources.Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar.Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 - 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.
大陆溢流玄武岩(CFB)因其高反应性和丰富的二价金属离子而被认为是潜在的 CO2 储存场所,这些金属离子有可能将碳固定在地质时间尺度上。此外,在世界上许多地方都发现了具有广阔横向延伸的 CFB,它们与主要的 CO2 点排放源之间的距离合理。
基于哥伦比亚河玄武岩(CRB)的矿物和玻璃成分,我们估计了 CFB 储存 CO2 于次生碳酸盐中的潜力。我们通过动力学相关的主要玄武岩矿物(辉石、长石和玻璃)的溶解以及次生相(风化产物)的局部平衡假设来模拟该系统。模拟分为在恒定 CO2 压力为 100 巴的封闭系统分批模拟,同时对温度和反应表面积的敏感性进行研究,评估 scCO2 中 H2O 的反应性,最后进行一维反应扩散模拟,以给出 CO2 压力从 0 到 100 巴的反应性。
尽管反应表面积和相应反应速率的不确定性很大,但我们已经估计了 CO2 矿物储存的潜力,并确定了控制碳化作用最大程度的因素。模拟表明,在 40°C 条件下,玄武岩形成碳酸盐的过程可能仅限于形成菱铁矿和可能的 FeMg 碳酸盐。钙主要与沸石和氧化物反应而不是形成碳酸盐。在较高温度(60-100°C)下,菱镁矿与菱铁矿和铁白云石一起形成。如果 CO2 无限供应给反应,则作为固体碳酸盐储存的 CO2 的最大潜力取决于可用的孔隙空间,因为水合和碳化反应会增加固体体积并堵塞孔隙空间。对于在 scCO2 相中有有限量水的系统,总碳化潜力受到水合作用消耗的玄武岩的量的限制。