Suppr超能文献

生长因子补充可改善体内和工程半月板修复。

Growth factor supplementation improves native and engineered meniscus repair in vitro.

机构信息

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Acta Biomater. 2012 Oct;8(10):3687-94. doi: 10.1016/j.actbio.2012.06.005. Epub 2012 Jun 12.

Abstract

Few therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor β3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering. Circular meniscus repair constructs were formed and refilled with either native tissue or scaffolds. Repair constructs were cultured in serum-containing medium for 4 and 8weeks with various growth factor formulations, and assessed for mechanical strength, biochemical content, and histological appearance. Results showed that either short-term delivery of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 increased proteoglycan content in the explants, bFGF did not increase DNA content after 8weeks of culture. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate meniscus repair, but that the time course of delivery will strongly influence success. Further, this study demonstrates that electrospun scaffolds are a promising material for meniscus tissue engineering, achieving comparable or superior integration compared with native tissue.

摘要

对于损伤后的半月板修复,目前治疗选择有限。局部递送生长因子可能会刺激修复,并为工程替代材料创造有利的环境。在这项研究中,我们评估了碱性成纤维细胞生长因子(bFGF)(促有丝分裂剂)和转化生长因子β3(TGF-β3)(促基质形成剂)对半月板修复和静电纺聚己内酯(PCL)支架整合/成熟的影响用于半月板组织工程。形成了圆形半月板修复结构,并将其用天然组织或支架填充。修复结构在含血清的培养基中培养 4 和 8 周,采用不同的生长因子配方,评估力学强度、生化含量和组织学外观。结果表明,无论是短期 bFGF 给药还是持续 TGF-β3 给药,都能提高幼年和成年牛组织的整合强度,对工程材料也有类似的发现。虽然 TGF-β3 增加了外植体中的蛋白聚糖含量,但 bFGF 在培养 8 周后并未增加 DNA 含量。这项工作表明,体内递送 bFGF 或 TGF-β3 可能会刺激半月板修复,但递送的时间过程将强烈影响修复的效果。此外,本研究表明,静电纺丝支架是一种有前途的半月板组织工程材料,与天然组织相比,它可以实现类似或更好的整合。

相似文献

1
Growth factor supplementation improves native and engineered meniscus repair in vitro.
Acta Biomater. 2012 Oct;8(10):3687-94. doi: 10.1016/j.actbio.2012.06.005. Epub 2012 Jun 12.
3
In Vitro Repair of Meniscal Radial Tear With Hydrogels Seeded With Adipose Stem Cells and TGF-β3.
Am J Sports Med. 2018 Aug;46(10):2402-2413. doi: 10.1177/0363546518782973. Epub 2018 Jul 12.
4
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation.
Osteoarthritis Cartilage. 2013 May;21(5):773-81. doi: 10.1016/j.joca.2013.02.655. Epub 2013 Mar 5.
5
Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering.
Tissue Eng Part A. 2011 Jan;17(1-2):193-204. doi: 10.1089/ten.TEA.2010.0272. Epub 2010 Oct 8.
6
Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds.
J Tissue Eng Regen Med. 2010 Feb;4(2):115-22. doi: 10.1002/term.221.
9
TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
J Control Release. 2015 May 28;206:101-7. doi: 10.1016/j.jconrel.2015.03.026. Epub 2015 Mar 21.

引用本文的文献

1
Revealing the Potency of Growth Factors in Bovine Colostrum.
Nutrients. 2024 Jul 21;16(14):2359. doi: 10.3390/nu16142359.
2
Usefulness of platelet-rich fibrin as a scaffold for meniscal repair: A non-randomized controlled cohort/follow-up study.
J Orthop. 2024 Feb 16;52:94-101. doi: 10.1016/j.jor.2024.02.009. eCollection 2024 Jun.
4
Impact of Biologic Augmentation on Revision Surgery Rates After Meniscus Repair: A Matched-Cohort Analysis of 3420 Patients.
Orthop J Sports Med. 2023 Aug 25;11(8):23259671231186990. doi: 10.1177/23259671231186990. eCollection 2023 Aug.
6
Transient inhibition of meniscus cell migration following acute inflammatory challenge.
J Orthop Res. 2023 Sep;41(9):2055-2064. doi: 10.1002/jor.25545. Epub 2023 Mar 22.
7
A review of strategies for development of tissue engineered meniscal implants.
Biomater Biosyst. 2021 Aug 26;4:100026. doi: 10.1016/j.bbiosy.2021.100026. eCollection 2021 Dec.
8
Pneumatospinning Biomimetic Scaffolds for Meniscus Tissue Engineering.
Front Bioeng Biotechnol. 2022 Feb 2;10:810705. doi: 10.3389/fbioe.2022.810705. eCollection 2022.
9
Efficiency of platelet-rich plasma therapy for healing sports injuries in young athletes.
Exp Ther Med. 2022 Mar;23(3):215. doi: 10.3892/etm.2022.11139. Epub 2022 Jan 11.

本文引用的文献

1
What's new in orthopaedic research.
J Bone Joint Surg Am. 2011 Nov 16;93(22):2136-41. doi: 10.2106/JBJS.K.00981.
2
Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes.
Arthroscopy. 2011 Sep;27(9):1275-88. doi: 10.1016/j.arthro.2011.03.088. Epub 2011 Aug 6.
3
The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration.
Biomaterials. 2011 Oct;32(30):7411-31. doi: 10.1016/j.biomaterials.2011.06.037. Epub 2011 Jul 18.
4
Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering.
Acta Biomater. 2011 Apr;7(4):1710-8. doi: 10.1016/j.actbio.2010.12.015. Epub 2010 Dec 23.
5
Local treatment of meniscal lesions with vascular endothelial growth factor.
J Bone Joint Surg Am. 2010 Nov 17;92(16):2682-91. doi: 10.2106/JBJS.I.01481.
6
Release kinetics and in vitro bioactivity of basic fibroblast growth factor: effect of the thickness of fibrous matrices.
Macromol Biosci. 2011 Jan 10;11(1):122-30. doi: 10.1002/mabi.201000222. Epub 2010 Sep 30.
7
Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering.
Tissue Eng Part A. 2011 Jan;17(1-2):193-204. doi: 10.1089/ten.TEA.2010.0272. Epub 2010 Oct 8.
8
Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus.
Biomaterials. 2010 Sep;31(26):6756-63. doi: 10.1016/j.biomaterials.2010.05.039. Epub 2010 Jun 12.
9
An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering.
Biomaterials. 2010 May;31(14):4113-20. doi: 10.1016/j.biomaterials.2010.01.098. Epub 2010 Feb 10.
10
Growth factors in cartilage and meniscus repair.
Injury. 2009 Dec;40 Suppl 3:S12-6. doi: 10.1016/S0020-1383(09)70005-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验