Suppr超能文献

羊模型中连续释放结缔组织生长因子和 TGF-β3 的 3D 打印支架中长期评估半月板组织形成。

Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional-Printed Scaffolds With Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model.

机构信息

Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.

Department of Cartilage Regeneration, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

Am J Sports Med. 2019 Sep;47(11):2596-2607. doi: 10.1177/0363546519865513. Epub 2019 Aug 6.

Abstract

BACKGROUND

Artificial meniscal scaffolds are being developed to prevent development of osteoarthritis after meniscectomy. Previously, it was reported that 3-dimensional (3D) anatomic scaffolds loaded with connective tissue growth factor (CTGF) and transforming growth factor β3 (TGF-β3) achieved meniscal regeneration in an ovine model. This was a relatively short-term study (3 months postoperative), and outcome analyses did not include magnetic resonance imaging (MRI).

PURPOSE

To evaluate long-term outcome of meniscal replacement with growth factor-laden poly-ε-caprolactone (PCL) scaffolds.

STUDY DESIGN

Controlled laboratory study.

METHODS

Anatomically shaped ovine meniscal scaffolds were fabricated from PCL with a 3D printer based on MRI data. Skeletally mature sheep (N = 34) were randomly allocated to 3 groups: scaffold without growth factor (0-µg group), scaffold with CTGF microspheres (µS) (5 µg) + TGF-β3 µS (5 µg) (5-µg group), and scaffold with CTGF µS (10 µg) + TGF-β3 µS (10 µg) (10-µg group). Unilateral medial meniscal replacement was performed. Animals were euthanized at 6 or 12 months. Regenerated meniscus, articular cartilage status, and synovial reaction were evaluated quantitatively with gross inspection, histology, and MRI. Kruskal-Wallis and Dunn tests were used to compare the 3 groups.

RESULTS

Remnants of the PCL scaffold were evident in the 6-month specimens and were decreased but still present at 12 months in most animals. There were no significant differences among groups in gross inspection, histology, or MRI for either meniscal regeneration or articular cartilage protection. All experimental groups exhibited articular cartilage degeneration as compared with control (nonoperated). In terms of synovitis, there were no clear differences among groups, suggesting that growth factors did not increase inflammation and fibrosis. MRI revealed that meniscal extrusion was observed in most animals (82.7%).

CONCLUSION

Previously, the combination of CTGF and TGF-β3 was shown to stimulate mesenchymal stem cells into a fibrochondrocyte lineage. CTGF and TGF-β3 did not aggravate synovitis, suggesting no adverse response to the combination of 3D-printed PCL scaffold combined with CTGF and TGF-β3. Further work will be required to improve scaffold fixation to avoid meniscal extrusion.

CLINICAL RELEVANCE

A significant advantage of this technique is the ability to print custom-fit scaffolds from MRI-generated templates. In addition, average-size menisci could be printed and available for off-the-shelf applications. Based on the 1-year duration of the study, the approach appears to be promising for meniscal regeneration in humans.

摘要

背景

人工半月板支架的开发是为了防止半月板切除术后骨关节炎的发展。此前有报道称,三维(3D)解剖支架负载连接组织生长因子(CTGF)和转化生长因子β3(TGF-β3)可在羊模型中实现半月板再生。这是一项相对短期的研究(术后 3 个月),并且结果分析不包括磁共振成像(MRI)。

目的

评估生长因子负载聚己内酯(PCL)支架的半月板置换的长期结果。

研究设计

对照实验室研究。

方法

根据 MRI 数据,使用 3D 打印机从 PCL 制造出解剖形状的羊半月板支架。将成熟的羊(N=34)随机分配到 3 组:无生长因子支架(0-μg 组)、载 CTGF 微球(5μg)+TGF-β3 微球(5μg)支架(5-μg 组)和载 CTGF 微球(10μg)+TGF-β3 微球(10μg)支架(10-μg 组)。进行单侧内侧半月板置换。动物在 6 或 12 个月时安乐死。通过大体检查、组织学和 MRI 定量评估再生半月板、关节软骨状况和滑膜反应。使用 Kruskal-Wallis 和 Dunn 检验比较 3 组。

结果

在 6 个月的标本中,PCL 支架的残留物仍然存在,并且在大多数动物中,12 个月时减少,但仍然存在。在半月板再生或关节软骨保护方面,各组之间的大体检查、组织学或 MRI 均无显著差异。与对照组(未手术)相比,所有实验组均出现关节软骨退变。就滑膜炎而言,各组之间没有明显差异,这表明生长因子并没有增加炎症和纤维化。MRI 显示,大多数动物(82.7%)出现半月板外突。

结论

此前,CTGF 和 TGF-β3 的组合被证明可以刺激间充质干细胞向纤维软骨细胞谱系分化。CTGF 和 TGF-β3 并未加重滑膜炎,这表明 3D 打印 PCL 支架与 CTGF 和 TGF-β3 结合没有不良反应。需要进一步工作来改善支架固定以避免半月板外突。

临床意义

该技术的一个显著优势是能够从 MRI 生成的模板打印定制支架。此外,还可以打印平均大小的半月板,并提供现货应用。根据研究的 1 年持续时间,该方法似乎有望在人类半月板再生中得到应用。

相似文献

3
Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep.
Acta Biomater. 2022 Sep 15;150:181-198. doi: 10.1016/j.actbio.2022.07.029. Epub 2022 Jul 25.
4
PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model.
ACS Appl Mater Interfaces. 2019 Nov 6;11(44):41626-41639. doi: 10.1021/acsami.9b13611. Epub 2019 Oct 22.
6
Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.
Biofabrication. 2016 Apr 25;8(2):025003. doi: 10.1088/1758-5090/8/2/025003.
7
Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds.
J Dent Res. 2016 Jul;95(7):800-7. doi: 10.1177/0022034516642404. Epub 2016 Apr 6.
8
In Vitro Repair of Meniscal Radial Tear With Hydrogels Seeded With Adipose Stem Cells and TGF-β3.
Am J Sports Med. 2018 Aug;46(10):2402-2413. doi: 10.1177/0363546518782973. Epub 2018 Jul 12.

引用本文的文献

1
A new preclinical sheep model of medial meniscus anterior root repair: Part 1-Quantitative morphology and relationships to adjacent structures.
Knee Surg Sports Traumatol Arthrosc. 2025 Jul;33(7):2470-2486. doi: 10.1002/ksa.12656. Epub 2025 Mar 25.
2
Engineering soft-hard tissue interfaces in dental and craniofacial system by spatially controlled bioactivities.
Bioact Mater. 2024 Nov 25;45:246-256. doi: 10.1016/j.bioactmat.2024.11.030. eCollection 2025 Mar.
4
Promotion of hMDSC differentiation by combined action of scaffold material and TGF-β superfamily growth factors.
Regen Ther. 2024 Apr 13;27:307-318. doi: 10.1016/j.reth.2024.03.018. eCollection 2024 Dec.
5
Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process.
Sci Adv. 2023 Nov 10;9(45):eadg8138. doi: 10.1126/sciadv.adg8138. Epub 2023 Nov 8.
6
Meniscus heterogeneity and 3D-printed strategies for engineering anisotropic meniscus.
Int J Bioprint. 2023 Feb 27;9(3):693. doi: 10.18063/ijb.693. eCollection 2023.
7
3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks.
Mater Today Bio. 2023 Apr 5;20:100624. doi: 10.1016/j.mtbio.2023.100624. eCollection 2023 Jun.
8
A review of strategies for development of tissue engineered meniscal implants.
Biomater Biosyst. 2021 Aug 26;4:100026. doi: 10.1016/j.bbiosy.2021.100026. eCollection 2021 Dec.
9
Oxo-M and 4-PPBP Delivery Multi-Domain Peptide Hydrogel Toward Tendon Regeneration.
Front Bioeng Biotechnol. 2022 Jan 27;10:773004. doi: 10.3389/fbioe.2022.773004. eCollection 2022.
10
Meniscus regeneration by 3D printing technologies: Current advances and future perspectives.
J Tissue Eng. 2022 Jan 25;13:20417314211065860. doi: 10.1177/20417314211065860. eCollection 2022 Jan-Dec.

本文引用的文献

1
An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model.
Acta Biomater. 2018 Jun;73:127-140. doi: 10.1016/j.actbio.2018.04.012. Epub 2018 Apr 11.
2
The Ovine Model for Meniscus Tissue Engineering: Considerations of Anatomy, Function, Implantation, and Evaluation.
Tissue Eng Part C Methods. 2017 Dec;23(12):829-841. doi: 10.1089/ten.TEC.2017.0192. Epub 2017 Sep 29.
4
Negative Outcomes of Poly(l-Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model.
Tissue Eng Part A. 2016 Sep;22(17-18):1116-25. doi: 10.1089/ten.TEA.2016.0143.
5
Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.
PLoS One. 2016 Feb 11;11(2):e0148777. doi: 10.1371/journal.pone.0148777. eCollection 2016.
8
Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees With Cartilage Defects.
Clin Orthop Relat Res. 2015 Jul;473(7):2316-26. doi: 10.1007/s11999-015-4324-8. Epub 2015 Apr 30.
9
Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs.
Osteoarthritis Cartilage. 2015 Jun;23(6):1007-17. doi: 10.1016/j.joca.2015.02.008. Epub 2015 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验